Papers
Our latest publications
-
On the Role of the Action Space in Robot Manipulation Learning and Sim-to-Real Transfer
Elie Aljalbout, Felix Frank, Maximilian Karl, and Patrick van der Smagt (2024)
IEEE Robotics and Automation Letters (Volume 9, Issue 6)
paper | doi -
Guided Decoding for Robot Motion Generation and Adaption
Nutan Chen, Elie Aljalbout, Botond Cseke, and Patrick van der Smagt (2024)
paper -
M-HOF-Opt: Multi-Objective Hierarchical Output Feedback Optimization via Multiplier Induced Loss Landscape Scheduling
Xudong Sun, Nutan Chen, Alexej Gossmann, Yu Xing, Carla Feistner, Emilio Dorigatt, Felix Drost, Daniele Scarcella, Lisa Beer, and Carsten Marr (2024)
paper -
Action Inference by Maximising Evidence: Zero-Shot Imitation from Observation with World Models
Xingyuan Zhang, Philip Becker-Ehmck, Patrick van der Smagt, and Maximilian Karl (2023)
Conference on Neural Information Processing Systems (NeurIPS)
paper | blog -
AI Regulation Is (not) All You Need
Laura Lucaj, Patrick van der Smagt, and Djalel Benbouzid (2023)
Proceedings of the 2023 ACM Conference on Fairness, Accountability, and Transparency
paper | doi -
Filter-Aware Model-Predictive Control
Baris Kayalibay, Atanas Mirchev, Ahmed Agha, Patrick van der Smagt, and Justin Bayer (2023)
Learning for Dynamics and Control Conference
paper -
A sector-based approach to AI ethics: Understanding ethical AI-related incidents within their sectoral context
Dafna Burema, Nicole Debowski-Weimann, Alexander von Janowski, Jill Grabowski, Mihai Maftei, Mattis Jacobs, Patrick van der Smagt, and Djalel Benbouzid (2023)
Proceedings of the 2023 AAAI/ACM Conference on AI, Ethics, and Society
paper -
Initial state preparation for quantum chemistry on quantum computers
Stepan Fomichev, Kasra Hejazi, Modjtaba Shokrian Zini, Matthew Kiser, Joana Fraxanet Morales, Pablo Antonio Moreno Casares, Alain Delgado, Joonsuk Huh, Arne-Christian Voigt, Jonathan E. Mueller, and Juan Miguel Arrazola (2023)
paper -
Quantum Optimization: Potential, Challenges, and the Path Forward
Amira Abbas and et al. (2023)
paper -
CLAS: Coordinating Multi-Robot Manipulation with Central Latent Action Spaces
Elie Aljalbout, Maximilian Karl, and Patrick van der Smagt (2023)
Learning for Dynamics and Control Conference
paper -
PRISM: Probabilistic Real-Time Inference in Spatial World Models
Atanas Mirchev, Baris Kayalibay, Ahmed Agha, Patrick van der Smagt, Daniel Cremers, and Justin Bayer (2022)
Conference on Robot Learning
paper | blog -
Local Distance Preserving Auto-encoders using Continuous k-Nearest Neighbours Graphs
Nutan Chen, Patrick van der Smagt, and Botond Cseke (2022)
ICML workshop on Topology, Algebra, and Geometry in Machine Learning
paper -
Tracking and Planning with Spatial World Models
Baris Kayalibay, Atanas Mirchev, Patrick van der Smagt, and Justin Bayer (2022)
Learning for Dynamics and Control
paper | blog -
Flat latent manifolds for human-machine co-creation of music
Nutan Chen, Djalel Benbouzid, Francesco Ferroni, Mathis Nitschke, Luciano Pinna, and Patrick van der Smagt (2022)
Conference on AI Music Creativity
paper | blog -
Latent Matters: Learning Deep State-Space Models
Alexej Klushyn, Richard Kurle, Maximilian Soelch, Botond Cseke, and Patrick van der Smagt (2021)
Conference on Neural Information Processing Systems (NeurIPS)
openreview.net | blog -
Exploration via Empowerment Gain: Combining Novelty, Surprise and Learning Progress
Philip Becker-Ehmck, Maximilian Karl, Jan Peters, and Patrick van der Smagt (2021)
International Conference on Machine Learning (ICML) Workshop on Unsupervised Reinforcement Learning
openreview.net -
Less Suboptimal Learning and Control in Variational POMDPs
Baris Kayalibay, Atanas Mirchev, Patrick van der Smagt, and Justin Bayer (2021)
International Conference on Learning Representations (ICLR) Workshop for Self-Supervision for Reinforcement Learning
openreview.net | blog -
Variational State-Space Models for Localisation and Dense 3D Mapping in 6 DoF
Atanas Mirchev, Baris Kayalibay, Patrick van der Smagt, and Justin Bayer (2021)
International Conference on Learning Representations (ICLR)
paper | openreview.net | blog -
Constrained Probabilistic Movement Primitives for Robot Trajectory Adaptation
Felix Frank, Alexandros Paraschos, Patrick van der Smagt, and Botond Cseke (2021)
IEEE Transactions on Robotics
paper | video | doi -
Mind the Gap when Conditioning Amortised Inference in Sequential Latent-Variable Models
Justin Bayer, Maximilian Soelch, Atanas Mirchev, Baris Kayalibay, and Patrick van der Smagt (2021)
International Conference on Learning Representations (ICLR)
paper | openreview.net | blog -
Layerwise learning for quantum neural networks
Andrea Skolik, Jarrod R. McClean, Masoud Mohseni, Patrick van der Smagt, and Martin Leib (2021)
Quantum Machine Intelligence 3 (1), 1-11
paper | blog | doi -
Continual Learning with Bayesian Neural Networks for Non-Stationary Data
Richard Kurle, Botond Cseke, Alexej Klushyn, Patrick van der Smagt, and Stephan Günnemann (2020)
International Conference on Learning Representations (ICLR)
openreview.net | blog -
Learning to Fly via Deep Model-Based Reinforcement Learning
Philip Becker-Ehmck, Maximilian Karl, Jan Peters, and Patrick van der Smagt (2020)
paper | blog -
Learning Flat Latent Manifolds with VAEs
Nutan Chen, Alexej Klushyn, Francesco Ferroni, Justin Bayer, and Patrick van der Smagt (2020)
International Conference on Machine Learning (ICML)
paper | blog -
Variational Tracking and Prediction with Generative Disentangled State-Space Models
Adnan Akhundov, Maximilian Soelch, Justin Bayer, and Patrick van der Smagt (2019)
paper -
Beta DVBF: Learning State-Space Models for Control from High Dimensional Observations
Neha Das, Mximilian Karl, Philip Becker-Ehmck, and Patrick van der Smagt (2019)
paper -
Unsupervised real-time control through variational empowerment
Maximilian Karl, Philip Becker-Ehmck, Maximilian Soelch, Djalel Benbouzid, Patrick van der Smagt, and Justin Bayer (2019)
International Symposium on Robotics Research (ISRR)
paper -
Learning Hierarchical Priors in VAEs
Alexej Klushyn, Nutan Chen, Richard Kurle, Botond Cseke, and Patrick van der Smagt (2019)
Conference on Neural Information Processing Systems (NeurIPS)
paper | blog -
Switching Linear Dynamics for Variational Bayes Filtering
Philip Becker-Ehmck, Jan Peters, and Patrick van der Smagt (2019)
International Conference on Machine Learning (ICML)
paper -
Approximate Bayesian inference in spatial environments
Atanas Mirchev, Baris Kayalibay, Maximilian Soelch, Patrick van der Smagt, and Justin Bayer (2019)
Robotics: Science and Systems (RSS)
paper | blog -
On Deep Set Learning and the Choice of Aggregations
Maximilian Soelch, Adnan Akhundov, Patrick van der Smagt, and Justin Bayer (2019)
International Conference on Artificial Neural Networks (ICANN)
paper | blog -
Increasing the Generalisation Capacity of Conditional VAEs
Alexej Klushyn, Nutan Chen, Botond Cseke, Justin Bayer, and Patrick van der Smagt (2019)
International Conference on Artificial Neural Networks (ICANN)
paper -
Fast approximate geodesics for deep generative models
Nutan Chen, Francesco Ferroni, Alexej Klushyn, Alexandros Paraschos, Justin Bayer, and Patrick van der Smagt (2019)
International Conference on Artificial Neural Networks (ICANN)
paper | blog -
Bayesian learning of neural network architectures
Georgi Dikov, Patrick van der Smagt, and Justin Bayer (2019)
International Conference on Artificial Intelligence and Statistics (AISTATS)
paper | blog -
ORC—a lightweight, lightning-fast middleware
Felix Frank, Alexandros Paraschos, and Patrick van der Smagt (2019)
IEEE International Conference on Robotic Computing (IRC)
paper | doi -
Multi-source neural variational inference
Richard Kurle, Stephan Guennemann, and Patrick van der Smagt (2018)
AAAI Conference on Artficial Intelligence
paper -
Active learning based on data uncertainty and model sensitivity
Nutan Chen, Alexej Klushyn, Alexandros Paraschos, Djalel Benbouzid, and Patrick van der Smagt (2018)
International Conference on Intelligent Robots and Systems (IROS)
paper | blog -
Metrics for deep generative models
Nutan Chen, Alexej Klushyn, Richard Kurle, Xueyan Jiang, Justin Bayer, and Patrick van der Smagt (2018)
International Conference on Artificial Intelligence and Statistics (AISTATS)
paper | blog -
Deep variational Bayes filters: unsupervised learning of state space models from raw data
Maximilian Karl, Maximilian Soelch, Justin Bayer, and Patrick van der Smagt (2017)
International Conference on Learning Representations (ICLR)
paper | blog