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Abstract—Robotic tasks are commonly solved by integrating
numerous different software and hardware modules into one
working application. The necessary integration work typically
contributes a considerable share of the total work required for
a project, which is why past research on robotics computing
has pushed towards generating higher-level abstraction layers,
like middlewares. However, the current state-of-the-art cannot
provide reliable, low-latency communication performance as
we will show in the experimental evaluation. In this paper we
propose the Open Robot Communication framework (ORC).
Compared to previous middlewares, ORC is lightweight and
geared towards applications with high-performance require-
ments. We consider ORC especially useful for applications with
Human Robot Interaction or collaborative tasks involving mul-
tiple robots. In the paper, we compare the runtime performance
of ORC to the robot operating system (ROS). We can show
that ORC enables message transfer with delays far below one
millisecond and we demonstrate the real-time capabilities of
ORC in a force-control task implemented in Python.

I. INTRODUCTION

The field of robotics is characterized by a very complex
and multidisciplinary nature. Robotic tasks typically have to
be solved by combining control theory with a multitude of
sensor inputs, like force sensors or vision, and a decision-
making system. Many tasks require the integration of a
variety of hardware parts, where it is necessary to combine
custom low-level code. Therefore, robotics is a domain that
can benefit from modular and reusable code. In the past, this
has led to the development of numerous software tools tai-
lored towards providing higher-level abstractions, effectively
reducing the time required to implement an application. One
example of software, promoting the development of modular
functionality, are middleware solutions. Middlewares pro-
vide application developers with a communication mech-
anism, enabling the coordination of distributed programs
through information exchange. Prominent examples are the
robot operating system (ROS) [1], the open robot control
software project (OROCOS) [2], the OpenRTM-AIST [3]
and Yet Another Robot Platform (YARP) [4]. Other research
projects, like the player project [5] have worked towards
creating hardware abstraction layers or are implementing
model-driven methods for robotic behavior specification [6],
[7]. For a detailed overview of available solutions the reader
is referred to [8].

Previous to developing ORC, we evaluated YARP and
ROS for our applications. YARP offers two main features.

First, it enables communication between different software
modules through a protocol similar to publish–subscribe.
Second, YARP provides developers with a Hardware Ab-
straction Layer (HAL) for commonly used hardware. Com-
bined, those two features can significantly reduce the de-
velopment time for a novel application. However, compared
to other middlewares, the communication setup in YARP is
non-trivial, making it hard for new users to benefit from the
message exchange functionalities. Additionally, YARP does
not offer real-time performance. For most applications that
is fine, however, it eliminates YARP as a candidate for tasks
with critical safety functions.

ROS, on the other hand, is the de facto standard for
middlewares in the robotics community. ROS offers a
publish–subscribe communication paradigm in which pro-
grams, called nodes, can publish messages through separate
communication channels, called topics. Topics are uniquely
identified by name. Messages in ROS are strongly typed.
Developers have to specify the exact message structure
in an interface description file, which can then be used
with the ROS build system to generate the required code
for serialization and deserialization of the message type.
Afterwards developers can use the generated source files to
incorporate the message type into their application. The ROS
ecosystem offers a great amount of functionality, however,
the core of ROS, the underlying message passing system,
can often not fulfill the high performance requirements,
especially when used for low-level control. We show that
communication through ROS can introduce high latencies
in the range of tens of milliseconds, especially for messages
sized around one to ten kilobyte. This can introduce an
excessive delay into the system, preventing the use of ROS
in low-level control applications.

In this paper, we propose a novel, lightweight and
lightning-fast middleware, the Open Robot Communication
(ORC) framework. ORC is an alternative middleware for ap-
plications with high-performance requirements. We demon-
strate the performance of ORC with message latencies well
below one millisecond and we establish the utility of ORC
in real applications by showing a real-time force controller
implemented in Python. In general direct force-control en-
ables robots to adapt to the environmental constraints rather
than modeling those in detail beforehand. Many interaction
tasks such as mechanical part mating or polishing use robotic
force-control to prevent failures due to excessive buildup of
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Figure 1. Franka Panda robot that we used to evaluate the performance
of our approach in a force-control task

the contact force over the mechanical limits [9]. Compared
to the encoders used in robotic motion control, force–torque
sensors have a higher noise level, which in turn requires a
low-latency control systems to perform accurate reference
tracking of the contact force. For the experiments we use a
Panda robot from FRANKA EMIKA. The setup is depicted
in Figure 1.

The remainder of the paper is organized as follows:
Section II presents ORC’s software architecture and the
essential criteria influencing the design of the middleware.
Afterwards, section III highlights important implementation
details and shows the interface available to developers.
Section IV first presents a round-trip latency comparison
between ORC and ROS. Second, we show that ORC can
be used for robotic force-control with contact while using
a Python controller. The paper ends with a summary of the
contribution in section V.

II. SOFTWARE ARCHITECTURE

ORC is designed with the several major requirements in
mind. First, to deliver a high-performance communication
mechanism that enables message transfer with minimal
delays below one millisecond, when handling messages up
to the size of a megabyte. Second, ORC shall be close to
real-time capable. TCP, due to the retransmissions, cannot
guarantee an upper bound on latency, however, ORC shall be
optimized for the use with a Linux RT patched kernel [10],
[11]. Therefore it shall deliver low-latency communication
even if the system is under heavy load. Third, we propose a
minimal set of dependencies to guarantee compatibility with
a wide range of hardware devices. Fourth, in the near future
ORC shall make it considerably easier to combine high-level
machine learning methods with low-level control functions.
As such ORC provides client libraries in C++ and in Python.
Finally, it should be easy to develop application code using
ORC. As such, we aim to provide a high-level interface,

enabling application developers to use ORC’s functionality
with a few lines of code.

The communication pattern offered by ORC is a one-to-
many publish–subscribe pattern. A communication partici-
pant can register topics, which are uniquely identified by
name. Other participants can subscribe to these topics. As
in ROS, topics are separate communication channels which
can be used for message transfer. The software is split into a
backend application, called the Address Broker and a library,
liborc, providing access to the communication mechanism.
Compared to a classic broker approach, where every mes-
sage is routed through the backend, ORC’s Address Broker
is designed such that it is only necessary for setting up the
communication channels between the individual participants.
After setup, the participants use direct one-to-one connec-
tions between the individual participants. Additionally, one-
to-many multicast support is currently investigated. The
inner working and structure of the communication in the
case of three distinct participants is shown in Figure 2. The
Address Broker keeps track of the individual participants and
the topics they can offer in a special data structure called the
Topic Mapping. The participants use a custom request–reply
protocol to coordinate topics and corresponding addresses
with the backend. This is visualized in the top half of the
Figure. Participants can declare and request topics from
the Address Broker by sending messages to the backend.
The Address Broker stores and distributes all information
necessary for participants to open communication channels
with each other. These channels, visualized in the bottom
half of the Figure, follow a publish-subscribe pattern. A
publisher can have an arbitrary number of subscribers.
Equally, participants can subscribe to as many topics as
they wish. The upper limit for available topics is given
solely by the availability of TCP ports in the system. All the
communication is handled by the middleware, so application
developers can be ignorant to where their messages come
from or go to.

III. SOFTWARE IMPLEMENTATION

Numerous communication libraries and data distribution
services have been proposed in the recent years. For devel-
oping ORC we evaluated nanomsg1, eProsima Fast RTPS2,
nanomsg next generation3 [12] and zeroMQ4 [13]. The core
part of ORC is implemented entirely in C++, where we
use zeromq to build both our publish–subscribe and the
request–reply protocols. ZeroMQ offers a broader function-
ality and a bigger user base, compared to the nanomsg
successors. Fast-RTPS offers a much more high-level data
distribution mechanism, which we found to be too con-
straining for our application. ORC is implemented as a non-

1https://nanomsg.org/
2https://github.com/eProsima/Fast-RTPS
3https://nanomsg.github.io/nng/
4http://zeromq.org/
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Figure 2. ORC’s internal structure. The Address Broker backend application handles the communication setup visualized in the top, whereas individual
participants can exchange messages with a publish-subscribe pattern shown in the bottom half

blocking message queue with only one message. Sending
and receiving messages are equivalent to enqueueing or
dequeuing messages into the queue, respectively. Both of
these actions never block unless an application wants to.
The actual message delivery is handled asynchronously in
the background. The queue size of one guarantees that a
subscriber will always have the latest delivered message. In
this way, the middleware takes care of potential issues with
slow consumers. Slow consumers are a common appearance
in robotics because typically low-level control and high level
task reasoning run at very different frequencies.

ORC uses three distinct communication pathways depend-
ing on how the participants are physically connected to each
other. For message transfers between two participants within
the same process, the zeromq INPROC protocol is used. It is
based on classic operating system pipes and delivers constant
latencies independent of the message size. If two participants
are not within the same process, but are located on the same
host, fast linux interprocess sockets are used. Finally, if the
two participants can only communicate through a network,
ORC currently uses TCP to deliver messages. A single
publisher can have separate one-to-one connections through
all three communication channels at the same time and for
the same topic. Referring back to Figure 2, Participant B
will use TCP to communicate with Participant A, while at
the same time, the connection to Participant C is established

through a linux interprocess socket.
Another feature of ORC is its robustness to network

failures. The Address Broker keeps track of past connections
and any application program which is restarted after a
critical failure will reconnect to lost connections. Temporary
network outages are handled by the underlying zeromq
framework automatically.

A. Application interface

ORC offers a very simple interface for any application
code. The core functionality is available through four distinct
functions. Two of them are used for setting up the com-
munication channels. With these functions, applications can
declare and request topics by name. Internally, the request–
reply protocol is used to update the Topic Mapping managed
by the Address Broker.

After the communication setup, an application can use
two additional functions for sending and receiving messages.
Messages in the ORC framework are considered to be byte
arrays. Consequently, users have to take care of serialization
and deserialization of the transmitted information. This has
the advantage that ORC is compatible with any serialization
format. Internally, for the request–reply protocol, ORC uses
Google’s flatbuffers technology [14], however, users may use
protocol buffers [15], JSON or any other format which can
be serialized into a byte array. The send method requires
only the topic name, a pointer to contiguous memory and



the size of the memory region, to transfer a message. The
receive method on the other hand, has a timeout parameter,
additional to the topic name. The timeout allows applications
to explicitly wait until new messages arrive in the message
queue. This enables application developers to write callback-
like functionality to message delivery events.

Both the send and the receive function are designed to
be nonblocking. Without a given timeout, in the case of
the receive method, the function calls return immediately.
Internally sending is equivalent to queuing a message for
delivery, while a call to receive simply fetches the latest
available message out of the queue. In Listing 1 we show
a small template application code written for ORC. This
small program could be a robot controller as indicated by
the comments. The important lines however are the lines 1,
6, 9, 13, 20 and 26. They show how the entire functionality
of ORC can be accessed within a few lines of code.

Listing 1. Template application code for ORC
1 #include "orc.h"

int main(int argc, char const *argv[])
{
/* Communication Setup */

6 orc::broker b;

/* Declare publishing topic */
if (!b.register_topic("robot_control")) {

return EXIT_FAILURE;
11 }

/* Subscribe to a topic */
if (!b.request_topic("robot_position")) {

return EXIT_FAILURE;
16 }

/* Main execution loop */
while(1) {

auto msg = b.recv_msg("robot_position", -1);
21

/* Deserialize message */
/* Use the information to compute control */
/* Serialize reply */

26 if (!b.send_msg(
"robot_control",
reply, reply_size) {

/* Error handling */
31 }

}
return 0;

}

IV. EXPERIMENTS

A. Performance Evaluation

For evaluation of the delay introduced by sending mes-
sages a round-trip latency test was performed. The experi-
ment includes two participants exchanging messages. Partic-
ipant A sends out a message and waits for a reply. Participant
B waits for a message and sends back the exact same
message to the original sender. The time between sending a

message and receiving a reply is measured by participant A.
This yields the round-trip delay, which is halved to acquire
the one-way delay. The experiment is repeated with different
message sizes ranging from 10 bytes to 100 megabytes. We
evaluate the performance of our approach by computing the
average latency between the two communication participants
for exchanging one million messages in a row. We tested all
three communication channels available to ORC. For the
messages sent through TCP, the two participants are on two
separate machines which are directly connected through their
own private network.

We compare the performance of ORC to the ROS mid-
dleware by performing the same experiment, where two
communicating ROS nodes were instantiated on the same
computer. The results of the experiments are visualized
in Figure 3 and Table I. Figure 3 shows a box plot for
the latency distribution of the experiment. Outliers are
indicated by a blue dot, while the median is shown as a
red line. The whiskers represent the range which includes
99.3% of all measurements. The Figures 3a to 3c show
the latency when sending messages through the different
communication channels. The Figures demonstrate that ORC
can handle message transfer with latencies well below one
millisecond with minimal fluctuation. The Figures 3d and 3e,
show the experimental results for the ROS experiments.
They are split up into two separate Figures for better
visualization. We experienced issues with ROS when the
message payload is around one kilobyte, and therefore it
is difficult to show the exact statistics of all message sizes
together in one plot. For a message holding 1 kilobyte of
data, the delay increases significantly and lies at an average
of 20 milliseconds. The problem was confirmed on three
separate machines with different linux operating systems,
namely Ubuntu 16.04, 18.04 and Arch Linux. For other
message sizes ROS introduces an average delay between 180
microseconds, for 10 byte messages, and 1.5 milliseconds
for messages with 1 megabyte of size. However, in contrast
to ORC, the experiments with ROS show significant fluctu-
ation. Even for small messages, we measured outliers with
delays in the millisecond range. Furthermore, the problem
with messages of a size around 1 kilobyte raises the potential
delay between two communication participants up to 20 and
more milliseconds. A delay of that order, combined with
the unreliability of the communication system, renders ROS
unusable for any high-performance applications in robotics.

Table I shows the average latencies introduced by sending
a message with ORC. We can observe that ORC performs at
least a factor 10 faster than ROS independent of the message
size. While we were unable to use ROS for messages
larger than 1 megabyte, we can do so with ORC.With large
messages, we see a linear increase in message latency.
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Figure 3. Latency distribution of our approach compared to ROS on sending one million messages of different sizes

B. Robot force-control

For this experiment we implemented a force-controller
for a Panda robot from FRANKA EMIKA. The Panda is a
seven degrees-of-freedom robotic manipulator with a torque
sensor in every axis. Closing the control loop on contact
force requires the controller to use torque sensors instead of
relying on the joint encoders. Torque sensors have a higher
noise level compared to the encoders, which requires a high-
bandwidth controller to perform accurate reference tracking.
Even though Python is not real-time capable and has to
be considered as introducing a considerable delay by itself,
we show that a force controller implemented in python is
feasible with low-latency communication.

The Panda robot requires a controller running at a 1 kHz
frequency, and it can be interfaced through a C++ library
called libfranka5. For our setup we use a small C++ wrapper

5https://github.com/frankaemika/libfranka

to directly interface with the robot and provide a control
signal at a reliable rate. Simultaneously this wrapper con-
stantly publishes the robot state information and listens to
a topic for torque commands, which are directly passed
on to the robot. Additionally, the wrapper attenuates the
desired torque in case of a communication failure to ensure
a safe behavior during the experiments. The actual control
loop is implemented in a callback-like fashion with Python.
The controller waits for an update about the state of the
robot and uses the robot kinematics to map a desired end-
effector force to a desired joint space torque. Afterwards,
the desired torque is used as a feed-forward signal, whereas
a PI controller complements the setup to ensure disturbance
rejection.

We compare the performance of this controller, imple-
mented in Python, to one which is implemented directly in
C++ and does not use ORC to exchange messages. In the
experiment the robot end-effector is faced flat towards a table



Table I
AVERAGE ONE WAY MESSAGE DELAY IN MICROSECONDS FOR EACH TRANSPORT PROTOCOL DEPENDING ON THE MESSAGE SIZE

Message size 10 b 100 b 1 kb 10 kb 100 kb 1 mb 10 mb 100 mb

Transport protocol

INPROC 18.40 18.24 18.41 18.45 17.98 18.35 17.46 17.73
IPC 10.94 9.74 10.09 13.08 23.43 112.20 1760.63 17160.96
TCP 12.43 11.10 11.48 15.87 30.69 120.49 2068.06 19876.30
ROS 181.14 199.48 19034.53 1455.61 242.01 1494.74 - -
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Figure 4. System response comparison for a controller implemented in
Python using ORC (blue) and a controller implemented directly in C++
(red)

and applies a reference contact force. An example system
response to a step input is shown in Figure 4a, whereas
Figure 4b shows one example of the system’s response for
a sinusoidal reference trajectory. The blue line depicts the
controller using ORC, the red line is the controller using
libfranka directly and the dashed black line is the reference
trajectory. The Figures show that the control performance is
barely influenced by constant communication between the
low-level robot interface and the controller itself. The exper-
iments demonstrate that a high performance communication
mechanism, which provides message transfers with minimal
delay, can enable controllers written directly in high-level
abstraction languages like Python, without incurring signifi-

Table II
MEAN AND STANDARD DEVIATION OF THE TRACKING ERROR IN
NEWTON FOR TWO CONTROLLERS AND DIFFERENT REFERENCE

TRAJECTORIES (N = 6)

Controller Python C++

Reference Trajectory

Step Response 0.599 (+/- 0.449) 0.455 (+/- 0.395)
Sinusoidal Trajectory 1.079 (+/- 0.093) 0.968 (+/- 0.136)

cant penalties with respect to control performance. Table II
summarizes mean and standard deviation of the tracking
error during the experiments. Every experiment was repeated
six times.

V. CONCLUSION

Modular software development has proven to be a viable
way to deal with the high complexity present in robotic
tasks. However, the combination of such modules requires
middleware applications like ROS, OROCOS or YARP.
While these solutions provide a multitude of functionality,
applications with high performance requirements cannot
utilize these tools. In this paper, we presented a novel
middleware geared specifically towards these robotic ap-
plications with high performance requirements. Therefore,
the Open Robot Communication middleware is presented
as a lightweight alternative to the current state-of-the-art.
ORC can perform message exchange with latencies far
below one millisecond, enabling novel applications to use
the benefits of modular software design. We demonstrated
that a low-latency communication enables controllers to
be written directly in higher level languages. Specifically
our middleware has the following advantages over other
middleware solutions:

• Minimal delay introduced by the message transfer
• Compatibility with many available serialization li-

braries
• High-level interface to the middleware functionality

Furthermore, ORC was optimized with respect to a preempt
RT patched kernel, which ensures high performance even
under heavy load. This advantage is relevant for tasks with
strict safety requirements. Examples are collaborative tasks
with robot and human in the loop.



Future work will investigate the use of multicasting and
UDP based protocols. Especially for messages with a bigger
payload, like images, the publisher, internally, has to copy
the message and send it to every subscriber individually,
whereas multicasting would allow ORC to use the special-
ized network devices for the duplication. Additionally we
are planning on releasing a small state machine library,
which allows developers to specify modular functionalities
using ORC, and enables convenient construction of entire
applications by combining and scheduling these modules.

Finally, we would like the research community to benefit
from ORC. Therefore, the Open Robot Communication
middleware is available as open source code on our github
repository6. Currently, we have tested and verified ORC
on multiple linux operating system with Intel and ARM
processors, which are only constrained by the necessity of
a compiler supporting the C++11 standard.
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