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1 Probability Theory

Problem 1 [2 points] Your friend Mark Z. has a hepatic carcinoma checkup using a new medical
technology. The result shows that Mark has the disease. The test is 98% accurate. In other words,
this method detects hepatic carcinoma in 98 out of 100 times when it is there, and in 2/100 misses
it; this method detects hepatic carcinoma in 2 of 100 cases when it is not there, and 98 of 100 times
correctly returns a negative result. The previous research of hepatic carcinoma suggests that one in
2,000 people has this disease. What is the probability that Mark actually has hepatic carcinoma? Put
down everything up to the point where you would use your calculator and stop there.

Assume T=1 represent a positive test outcome, T=0 represent a negative test outcome, D = 1
mean Mark has the disease, and D = 0 mean Mark doesn’t have the disease. We have, P (T =
1|D = 1) = 0.98, P (T = 0|D = 0 = 0.98) and P (D = 1) = 0.005. The question is simplified to
calculate P (D = 1|T = 1). With Bayes’ rule, we can derive:

P (D = 1|T = 1) =
P (T = 1|D = 1)P (D = 1)

P (T = 1|D = 1)P (D = 1) + P (T = 1|D = 0)P (D = 0)

=
0.98× 0.005

0.98× 0.005 + 0.02× 0.995
=

2 Linear Regression

Problem 2 [2 points] We have 1D input points X = [0, 1, 2], and corresponding 2D output Y =
[{−1, 1}, {1,−1}, {2,−1}]. We embed xi into 2d with the basis function:

Φ(0) = (1, 0)T ,Φ(1) = (1, 1)T ,Φ(2) = (2, 2)T

The model becomes ŷ = WTΦ(x). Compute the MLE for W.

Put down everything up to the point where you would use your calculator and stop there.

ΦT =

(
1 1 2
0 1 2

)

Ŵ = (ΦTΦ)−1ΦTY =

(
−1 1
2 −1.6

)

Problem 3 [3 points] Assume that x̄ = 0. We have ridge regression, and we minimize:

J(w) = (y −Xw − w01)T (y −Xw − w01) + λwTw

Derive the optimizer

ŵridge = (λI + XTX)−1XTy
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J(w) = wTw + wT (XTX)w − 2yT (Xw) + λxTx− 2w01
Ty + 2w01

TXw + w01
T1w0

w01
TXw = xTw = 0

∂

∂w
J(w) = [2XTXw − 2XTy] + 2λw = 0

w = (XTX + λI)−1XTy

3 Logistic Regression

Consider the data in the following figure, where we fit the model p(y = 1|x,w) = σ(w0+w1x1+w2x2).
Suppose we fit the model by maximum likelihood, i.e., we minimize

J(w) = −L(w,Dtrain)

where L(w,Dtrain) is the log likelihood on the training set.

Problem 4 [2 points] Suppose we regularize only the w0 parameter, i.e., we minimize

J0(w) = −L(w,Dtrain) + λw2
0

and λ is a very large number. Sketch a possible decision boundary. Show your work.

Heavily regularizing w0, so the line must go through the origin. There are several possible line
with different slopes.

Problem 5 [2 points] Now suppose we heavily regularize only the w1 parameter, i.e., we minimize

J1(w) = −L(w,Dtrain) + λw2
1

Sketch a possible decision boundary. Show your work.
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Regularizing w1 makes the line horizontal since x1 is ignored.

4 Multivariate Gaussian

Problem 6 [2 points] The plot below shows a joint Gaussian distribution p(x1, x2). Qualitatively
(!) draw the conditionals p(x1|x2 = 0) and p(x1|x2 = 2) in the given coordinate systems. Note that
the scaling a is arbitrary but fixed.
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For a bivariate Gaussian distribution p(x1, x2) = N (x1, x2|µ,Σ) with µ = (µ1, µ2)
T and

Σ =

(
σ21 σ12
σ21 σ22

)
applying the formula for conditioning a Gaussian (e.g. Murphy, section 4.3.1) yields

p(x1|x2) = N (x1|µ1|2, σ1|2) = N (x1|µ1 +
σ12
σ22

(x2 − µ2), σ21 −
σ212
σ22

)

We see that while µ1|2 depends on the value of x2, σ1|2 does not. That implies for the drawing:

• the shape of both conditional Gaussians is identical.

• µ1|2 can be roughly inferred graphically as the middle point between the intersections of the
horizontal x2 lines with the iso-curves.

5 Kernels

We have x = [x1 x2]
T . Given the mapping

ϕ(x) = [1 x21
√

2x1x2 x22
√

2x1
√

2x2]
T

Problem 7 [2 points] Determine the kernel K(x,y). Simplify your answer.

K(x,y) = ϕT (x)ϕ(y) = (1 + xTy)2

6 Constrained optimization

Find the box with the maximum volume which has surface area no more than S ∈ R+.

Problem 8 [2 points] Derive the Lagrangian of the problem and the corresponding Lagrange dual
function. Hint: set the parameters of the length, width and height to be l, w, h respectively.

Problem 9 [3 points] Solve the dual problem and give the solution to the original problem.

Surface area is S = 2lw + 2lh+ 2hw and the volume is lwh

The problem is equivalent to:

Minimize: f(l, w, h) = −lwh



practice questions by brml.org (now at argmax.ai). Use, but please don’t distribute. 5

Subject to: h(l, w, h) = lw + lh+ hw − S
2 ≤ 0

L(l, w, h) = −lwh+ β(lw + lh+ hw − S

2
)

Computing the partial derivatives of L(l, w, h, α) with respect to w, l, h gives

∂L

∂l
= −wh+ β(w + h) = 0

∂L

∂w
= −lh+ β(l + h) = 0

∂L

∂h
= −wl + β(w + l) = 0

(1)

Solving this system of equations yields

l(α) = w(α) = h(α) = 2α.

Inserting this into L(l, w, h, α) yields the Lagrange dual function

g(α) = min
l,w,h

L(l, w, h, α) = 4α3 − αS
2
.

Solving the dual problem:

0 =
dg

dα

subject to dual feasibility α ≤ 0, yields

α = (
S

24
)1/2

and thus

l = w = h = (
S

6
)
1
2

max(lwh) = −min(f) = (
S

6
)
3
2

7 Neural Networks

This is an unfair mock question about material you have not yet seen.
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Problem 10 [2 points] What is deep about learning? Describe in 2–3 sentences.

Problem 11 [2 points] What vanishes in the gradient?


