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1 Linear Algebra and Probability Theory

For the next two exercises, let X and Y be two random variables with the joint cumulative distribution
function (cdf)

FX,Y =

{
1− e−x − e−y + e−x−y x, y ≥ 0

0 else
.

Problem 1 [3 points] Determine the marginal probability density functions (pdfs) fX and fY .

Identify the marginal distributions.

We recall:

Two routes are possible (upwards-sidewards or sidewards-upwards in the illustration above).

For x, y ≥ 0, the first route works as follow:

fX,Y (x, y) =
∂2FX,Y

∂x∂y
(x, y)

=
∂

∂y

(
e−x − e−x−y

)
= e−x−y = e−xe−y

fX(x) =

∫ ∞
−∞

fX,Y (x, y) dy

= e−x
∫ ∞
0

e−y dy

= e−x(0− (−1)) = e−x

The second route works as follows:

FX(x) = lim
y→∞

FX,Y (x, y)

= 1− e−x − (1− e−x) lim
y→∞

e−y

= 1− e−x

fX(x) =
dFX

dx
(x)

= e−x
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We recognize the pdf of an exponential distribution with parameter λ = 1.

Furthermore, we observe that Y follows the same distribution: Due to the symmetry FX,Y (x, y) =
FX,Y (y, x), all calculations shown above work equivalently for Y .

Problem 2 [2 points] Are X and Y independent? Prove your claim.

One can show either fX,Y = fXfY or FX,Y = FXFY , which shows independence of the two
variables. For calculations, cf. the solution to the previous exercise.
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2 kNN

Problem 3 [1 point] You are testing three new sensors. You would like to classify them using the
nearest neighbour approach with Euclidean distance (d(p, q) =

√∑n
i=1(qi − pi)2).

Sensor Output Nearest Neighbour (current) Nearest Neighbour (expected)

sensor1 [1, 150] sensor2 sensor3
sensor2 [2, 110] sensor3 sensor1 or sensor3
sensor3 [1, 100] sensor2 sensor1

Your sensors output two parameters each. This output is in the above table. Since this is a controlled
test of the sensors, you know that sensor1 and sensor3 belong to the same group and that sensor2
belongs to a different group. We can see that sensor2 is causing trouble for the classification of the
other sensors. We would expect the output to look like the fourth column in the above table. How
can you fix this problem without changing your distance measure from Euclidean?

Normalise the values of the parameters. (Whether L1, L2, or infinity norm, normalisation will fix
this problem)

Problem 4 [1 point] In general, especially with data which might have many uninformative param-
eters, why can the use of Euclidean distance as the distance measure be problematic? (Even after the
problem from above has been fixed?)

Euclidean distance treats each parameter with the same weight. Thus, uninformative parameters
can overpower predictive parameters.

3 Gaussian Processes

We have a data set x ∈ R1. You are given Gaussian processes f ∼ GP with mean function m(x) = 0,
covariance function k(x, x′), and a noisy observation ε ∼ N (0, σ2y).

Problem 5 [2 points] Assume the covariance function is k(x, x′) = (xx′ + 1)2, and the observation
data x1 = −1

2 , x2 = 2 is given, write down the distribution of p(f(x1), f(x2)). What is the relationship
of f(x1) and f(x2)? Describe your reasoning.

p(f(x1), f(x2)) = N
(
0,

(
25
16 + σ2y 0

0 25 + σ2y

))
(1 point)

The covariance function is diagonal, so they are independent. (1 point)
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Figure 1: Gaussian Processes

Problem 6 [2 points] We have a squared exponential (SE) kernel. With different values of σ2y , the
GP models are shown in Fig. 1. Which model is best? What causes the other two to be not good?
Explain your answer.

B is best. A noise variance σ2y is too small, and C is too large.

4 Neural networks

Problem 7 [3 points] A neural network with activation functions tanh(·) in the hidden units is
initialised with all parameters (weights, biases) set to 0. Can it learn? Explain your answer.

It’s a bit of a trick question, really, but most people should get at least 2 points out of it.

(+2 points) No, not with a gradient-based rule. If all parameters are 0, then the output is
independent of the input. So all weights would get the same gradient. Biases can generally be
initialised to zero but weights need to be initialised carefully to break the symmetry between
hidden units of the same layer. Because different output units receive different gradient signals,
this symmetry breaking issue does not concern the output weights (into the output units), which
can therefore also be set to zero.

(+1 point) But yes, if you use a non-gradient based learning method. Like random search.

Problem 8 [1 point] A neural network with activation functions tanh(·) in the hidden units is
initialised with all parameters (weights, biases) set to 1. Can it learn? Explain your answer.

It might not work well, but it would work as long as the neurons do not saturate.
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Figure 2: Four datasets

5 Unsupervised learning

Problem 9 [3 points] PCA was performed on dataset A, B and C (Fig.: 2). The three results are:

Result 1 Result 2 Result 3
normalised eigenvalues = [0.5, 0.5] [0.95, 0.05] [0.99, 0.01]

normalised eigenvectors =

[(
0.78
0.63

)
,

(
0.63
−0.78

)] [(
0.96
−0.27

)
,

(
0.27
0.96

)] [(
0.71
0.71

)
,

(
0.71
−0.71

)]

Unfortunately the results got mixed up. Which result corresponds to which dataset (A,B,C)? Explain
your answer.

(+1.5 points) A2, B1, C3

(+1.5 points) for the explanations.

Problem 10 [1 point] What would the result on dataset D look like (Fig.: 2)? Use the same notation
as in Problem 9.

(+1 point)
[0.5, 0.5][(
a
b

)
,

(
b
−a

)]
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6 Kernels

Consider the following algorithm.

Algorithm 1: Counting something

input : Character string x of length m (one based indexing)
input : Character string y of length n (one based indexing)
output: A number s ∈ R
s← 0;
for i← 1 to m do

for j ← 1 to n do
if x[i] == x[j] then

s← s+ 1;

Problem 11 [1 point] Explain, in no more than two sentences, what the above algorithm is doing.

The algorithm sums how many times each character c from string x appears in string y (or vice
versa).

Problem 12 [4 points] Let S denote the set of strings over a finite alphabet of size v. Define a
function K : S × S → R as the output of running algorithm 1 on a pair of strings x, y. Show that
K(x, y) is a valid kernel.

Algorithm 1 can be rewritten as follows

s← 0;
for i← 1 to m do

s← s+ (number of occurrences of x[i] in y);

and furthermore

s← 0;
for c← 1 to v do

s← s+ (number of occurrences of c in x)× (number of occurrences of c in y);

Thus defining the feature map φ : S → Rv where φ(x)c is the number of occurrences of character c
in string x, we see that the above algorithm computes K(x, y) = φ(x) ·φ(y). Since we constructed
an explicit feature map φ, K is a valid kernel.


