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1 Probability

Problem 1 [2 points] A Munich weather forecast app can forecast 4 kinds of weather—rainy, sunny,
snowy and cloudy. The accuracy of rainy forecast is 0.8, while the accuracy of sunny, snowy and
cloudy forecast is 0.9. In the past 5 years, Munich had 10 percent rainy days. If the app shows that
tomorrow is a rainy day, what is the probability that it is not going to rain?

We use A and W to replace the app and the real weather.

p(A = rain |W = rain) = 0.8

p(A = notrain |W = rain) = 0.2

p(A = rain |W = notrain) = 0.1

p(A = notrain |W = notrain) = 0.9

p(W = rain) = 0.1

p(W = notrain) = 0.9

p(W = notrain | A = rain)

=
p(A = rain |W = notrain)p(W = notrain)

p(A = rain |W = notrain)p(W = notrain) + p(A = rain |W = rain)p(W = rain)

=
0.1× 0.9

0.1× 0.9 + 0.8× 0.1
= 0.53

2 Neural networks

We have data with input x ∈ R and output y ∈ R (see the Figure). The training data is generated
from y = sin(πx) + 0.2 cos(20πx). We use neural networks with one input, one output and 40 hidden
units to approximate the data. The cost function is

E(w) =
1

2

N∑
n=1

‖z(xn,w)− yn‖2 + λwTw

where z(xn,w) is the prediction of xn.

The activation function that is used on the hidden units only is φ(x) = tanh(x), while the single
output unit is linear.
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Problem 2 [2 points] What is the reason that the model ignores the information of 0.2 cos(20πx)?
It is known that the size of the training data set is large enough.

The regularisation is a low-pass filter.

Problem 3 [1 point] If the input training data is in the range of [0, 2], plot the prediction in the
input data range (2, 4].

It cannot get a good result out of the training input range.

Problem 4 [2 points] If we use a linear activation for the hidden units, what would the result be?
Show your work.

It is linear.

3 Coin

Problem 5 [4 points] You have two coins, C1 and C2. Let the outcome of a coin toss be either
heads (Ci = 1) or tails (Ci = 0) for i = 1, 2. C1 is a fair coin, i.e., it has an equal prior on heads and
tails. However, C2 depends on C1: If C1 shows heads (C1 = 1), C2 will show heads with probability
0.7. If C1 shows tails (C1 = 0), C2 will show heads with probability 0.5. Now you toss C1 and C2 in
sequence once. You observe the sum of the two coins S = C1 + C2 = 1. What is the probability that
C1 shows tails and C2 shows heads? (Hint: Bayes’ rule.)

We know:

P (C1 = H = 1) = P (C1 = T = 0) = 0.5

P (C2 = H = 1|C1 = 1) = 0.7

P (C2 = H = 1|C1 = 0) = 0.5

S = C1 + C2 = 1

We want to know:

P (C1 = 0, C2 = 1|S = 1)

Therefore, we need Bayes rule [1 point]:

P (C1, C2|S)
Bayes
=

P (S|C1, C2)P (C1, C2)

norm. const.
chain rule

=
P (S|C1, C2)P (C1)P (C2|C1)

norm. const.
expand

=
P (S|C1, C2)P (C1)P (C2|C1)∑

C′
1,C

′
2
P (S|C ′1, C ′2)P (C ′1)P (C ′2|C ′1)
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Solve for asked probability [1 point]:

⇒ P (C1 = 0, C2 = 1|S = 1) =

=1︷ ︸︸ ︷
P (S = 1|C1 = 0, C2 = 1)

=0.5︷ ︸︸ ︷
P (C1 = 0)

=0.5︷ ︸︸ ︷
P (C2 = 1|C1 = 0)∑

C′
1,C

′
2
P (S = 1|C ′1, C ′2)P (C ′1)P (C ′2|C ′1)

Expand denominator [1 point]:∑
C′

1,C
′
2

P (S = 1|C ′1, C ′2)P (C ′1)P (C ′2|C ′1) = P (S = 1|C ′1 = 0, C ′2 = 0)︸ ︷︷ ︸
=0

P (C ′1 = 0)P (C ′2 = 0|C ′1 = 0)

+ P (S = 1|C ′1 = 1, C ′2 = 0)︸ ︷︷ ︸
=1

P (C ′1 = 1)P (C ′2 = 0|C ′1 = 1)

+ P (S = 1|C ′1 = 0, C ′2 = 1)︸ ︷︷ ︸
=1

P (C ′1 = 0)P (C ′2 = 1|C ′1 = 0)

+ P (S = 1|C ′1 = 1, C ′2 = 1)︸ ︷︷ ︸
=0

P (C ′1 = 1)P (C ′2 = 1|C ′1 = 1)

= P (C ′1 = 1)P (C ′2 = 0|C ′1 = 1) + P (C ′1 = 0)P (C ′2 = 1|C ′1 = 0)

= 0.5× (1− 0.7) + 0.5× 0.5

= 0.15 + 0.25 = 0.4

Write down final answer [1 point]:

P (C1 = 0, C2 = 1|S = 1) = 0.25/0.4

= 0.625 =
5

8

4 Linear Regression

You want to boost your Facebook page and therefore you book Facebook advertisements. A simple
linear model for the number of new likes per week (y), depending on the money spent (x) could be:

y = a0 + a1x+ ε

where y = number of new likes per week

x = money spent in that week, in units of 1 EUR

ε = normal (Gaussian) distributed fluctuations

After taking a lot of measurement data you fit the parameters. You find:

a0 = 10

a1 = 5

E[y] = 0

var[y] = 4
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The full model is therefore given by

y = 10 + 5x+N (0, 4)

= 10 + 5x+ (8π)−1/2 exp(−x2/8)

Problem 6 [3 points] Assume you spend no money, what is the probability that you get more than
10 likes per week?

x = 0

⇒ y = 10 + ε −→ N (10, 4)

⇒ p(y > 10) =

∫ ∞
10
N (10, 4)dy

= 0.5

Problem 7 [3 points] Now you spend 1 EUR on advertisements. What is the expected value of
likes?

x = 1

⇒ y = 10 + 5 + ε −→ N (15, 4)

⇒ E[y] = 15

5 Multivariate Normal

Consider a bivariate Gaussian distribution p(x1, x2) = N (x | µ,Σ) where

Σ =

(
σ21 σ12
σ21 σ22

)

Problem 8 [3 points] Compute p(x2 | x1) for the case σ1 = σ2 = 1 and σ12 = σ21 = ρ. Remember
that

p(x2 | x1) = N (x2 | µ2|1,Σ2|1)

µ2|1 = µ2 + Σ21Σ
−1
11 (x1 − µ1)

Σ2|1 = Σ22 − Σ21Σ
−1
11 Σ12

µ2|1 = µ2 + ρ(x1 − µ1)
Σ2|1 = 1− ρ2

=⇒ p(x2 | x1) = N (x2 | µ2 + ρ(x1 − µ1), 1− ρ2)
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Problem 9 [3 points] Give a graphical interpretation for the conditional obtained in the previous
problem.

p(x2 | x1) is obtained by “slicing” the joint distribution through the X1 = x1 line (cf. figure 4.9 on
p. 112, Murphy).

6 Logistic Regression

We employ a logistic regression model to classify the data which are plotted in the below figure,

P(Y = 1 | x, w1, w2) =
1

1 + exp(−w1x1 − w2x2)
.

We fit the data by the maximum likelihood approach, and minimise

J(w) = −l(w).

We get the decision boundary as shown in the figure, and the error of the classification is 0.

Problem 10 [3 points] Now, we regularise w2 and minimise

J0(w) = −l(w) + λw2
2.

Draw the area that the decision boundary can be and explain your work.

When we regularise w2, the decision boundary becomes more vertical. If λ is extremely large, the
decision boundary is x2 axis.
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7 Kernels

The following informations about kernels might be helpful for solving the next
two problems.

Let K1 and K2 be kernels on X ⊆ Rn, then the following functions are kernels:

1.K(x,y) = K1(x,y) +K2(x,y)

2.K(x,y) = αK1(x,y) for α > 0

3.K(x,y) = K1(x,y)K2(x,y)

4.K(x,y) = K3(φ(x),φ(y)) for K3 kernel on Rm and φ : X → RM

5.K(x,y) = xTBy for B ∈ Rn×n symmetric and positive semi-definite

The following identities involving the exponential function might be helpful for
solving the next two problems.

exp(x) =

∞∑
n=0

xn

n!

exp(x) = lim
n→∞

(
1 +

x

n

)n
exp(a+ b) = exp(a) exp(b)

exp(a b) = exp(a)b

Problem 11 [6 points] Let Z be a set of finite size. Show that the function

K0(X,Y ) = |X ∩ Y |

is a valid kernel, provided that X ⊆ Z and Y ⊆ Z. Remember that Z is finite, i.e. Z = {z1, z2, . . . , zN}.

Enumerate all elements of Z, i.e. Z = {z1, z2, . . . , zN}. This is possible because Z is of finite
cardinality.
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Define the feature map φ : 2Z → RN by

φi(X) =

{
1 if zi ∈ X
0 if zi /∈ X

.

We have

K0(X,Y ) =
N∑
i=1

φi(X)φi(Y )︸ ︷︷ ︸= 1 if zi ∈ X ∧ zi ∈ Y
= 0 otherwise

= |X ∩ Y | .

Problem 12 [4 points] Again, let Z be a set of finite size. Show that the function

K(X,Y ) = 2|X∩Y |

is a valid kernel, provided that X ⊆ Z and Y ⊆ Z.

Even if you did not succeed in the previous exercise, you may assume that K0(X,Y ) is a valid kernel.

Set
K1(X,Y ) = (log 2)K0(X,Y ) .

This is a kernel (multiplication of kernel by positive constant).

The Taylor expansion of the exponential function is

exp(K1(x,y)) = 1 +
∞∑
n=1

1

n!
K1(x,y)n .

The power K1(x,y)n is a kernel by iterated application of rule 3 (K1(x,y)K2(x,y) is a kernel).
The product (1/n!)K1(x,y)n is a kernel by rule 2 (αK1(x,y) if a kernel for α > 0) because (1/n!)
is always positive. The sum

∑∞
n=1 1/(n!)K1(x,y)n is a kernel by iterated application of rule 1

(K1(x,y) + K2(x,y) is a kernel). The constant 1 is a kernel by rule 4 (K3(φ(x),φ(y))) with
K3(x,y) = xTy and φ(z) = (1). Thus 1 +

∑∞
n=1

1
n!K1(x,y)n is a kernel by rule 1. This was

previously shown in lecture as part of the exercise “The Gaussian kernel” (tutor session about
kernels) and you may thus use this result without reproofing it.

Thus
K(X,Y ) = exp((log 2)|X ∩ Y |) = exp(log 2)|X∩Y | = 2|X∩Y |

is a valid kernel.

8 Constrained Optimisation

Suppose we have 40 pieces of raw material. Toy A can be made of one piece material with 3 Euro
machining fee. A larger toy B can be made from two pieces of material with 5 Euro machining fee.

We can sell x pieces of toy A for 20− x Euro each, and y pieces of toy B for 40− y Euro each.
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From our experience, toy B is more popular than toy A; therefore, we will produce not more of toy
A than of toy B. To get the maximum profit, we want to calculate the number toy A and toy B that
we should produce.

Problem 13 [3 points] Write down the problem using the primal optimisation method.

Problem 14 [3 points] The problem can be solved using Karush–Kuhn–Tucker (KKT) conditions.
Write down these conditions (but don’t solve them).

min f(x, y) =− ( x(20− x) + y(40− y)− 3x− 5y) = x2 − 17x+ y2 − 35y

s.t. x+ 2y ≤ 40

x ≤ y

L(x, y, α1, α2) = x2 − 17x+ y2 − 35y + α1(x+ 2y − 40) + α2(x− y)

∂L

∂x
= 2x− 17 + α1 + α2 = 0

∂L

∂y
= 2y − 35 + 2α1 − α2 = 0

α1(x+ 2y − 40) = 0

α2(x− y) = 0

x+ 2y ≤ 40

x ≤ y
α1, α2 ≥ 0


