1 Probability

Problem 1 [2 points] A Munich weather forecast app can forecast 4 kinds of weather—rainy, sunny, snowy and cloudy. The accuracy of rainy forecast is 0.8, while the accuracy of sunny, snowy and cloudy forecast is 0.9. In the past 5 years, Munich had 10 percent rainy days. If the app shows that tomorrow is a rainy day, what is the probability that it is not going to rain?

2 Neural networks

We have data with input $\mathbf{x} \in \mathbb{R}$ and output $\mathbf{y} \in \mathbb{R}$ (see the Figure). The training data is generated from $y = \sin(\pi x) + 0.2\cos(20\pi x)$. We use neural networks with one input, one output and 40 hidden units to approximate the data. The cost function is

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} ||z(x_n, \mathbf{w}) - y_n||^2 + \lambda \mathbf{w}^T \mathbf{w}$$

where $z(x_n, \mathbf{w})$ is the prediction of x_n .

The activation function that is used on the hidden units only is $\phi(x) = \tanh(x)$, while the single output unit is linear.

Problem 2 [2 points] What is the reason that the model ignores the information of $0.2\cos(20\pi x)$? It is known that the size of the training data set is large enough.

Problem 3 [1 point] If the input training data is in the range of [0,2], plot the prediction in the input data range (2,4].

Problem 4 [2 points] If we use a linear activation for the hidden units, what would the result be? Show your work.

3 Coin

Problem 5 [4 points] You have two coins, C_1 and C_2 . Let the outcome of a coin toss be either heads $(C_i = 1)$ or tails $(C_i = 0)$ for i = 1, 2. C_1 is a fair coin, i.e., it has an equal prior on heads and tails. However, C_2 depends on C_1 : If C_1 shows heads $(C_1 = 1)$, C_2 will show heads with probability 0.7. If C_1 shows tails $(C_1 = 0)$, C_2 will show heads with probability 0.5. Now you toss C_1 and C_2 in

sequence once. You observe the sum of the two coins $S = C_1 + C_2 = 1$. What is the probability that C_1 shows tails and C_2 shows heads? (Hint: Bayes' rule.)

4 Linear Regression

You want to boost your Facebook page and therefore you book Facebook advertisements. A simple linear model for the number of new likes per week (y), depending on the money spent (x) could be:

$$y = a_0 + a_1 x + \epsilon$$
 where $y =$ number of new likes per week $x =$ money spent in that week, in units of 1 EUR $\epsilon =$ normal (Gaussian) distributed fluctuations

After taking a lot of measurement data you fit the parameters. You find:

$$a_0 = 10$$

$$a_1 = 5$$

$$E[y] = 0$$

$$var[y] = 4$$

The full model is therefore given by

$$y = 10 + 5x + \mathcal{N}(0,4)$$

= 10 + 5x + (8\pi)^{-1/2} \exp(-x^2/8)

Problem 6 [3 points] Assume you spend no money, what is the probability that you get more than 10 likes per week?

Problem 7 [3 points] Now you spend 1 EUR on advertisements. What is the expected value of likes?

5 Multivariate Normal

Consider a bivariate Gaussian distribution $p(x_1, x_2) = \mathcal{N}(\mathbf{x} \mid \mu, \Sigma)$ where

$$\Sigma = \begin{pmatrix} \sigma_1^2 & \sigma_{12} \\ \sigma_{21} & \sigma_2^2 \end{pmatrix}$$

Problem 8 [3 points] Compute $p(x_2 \mid x_1)$ for the case $\sigma_1 = \sigma_2 = 1$ and $\sigma_{12} = \sigma_{21} = \rho$. Remember that

$$p(x_2 \mid x_1) = \mathcal{N}(x_2 \mid \mu_{2|1}, \Sigma_{2|1})$$

$$\mu_{2|1} = \mu_2 + \Sigma_{21} \Sigma_{11}^{-1} (x_1 - \mu_1)$$

$$\Sigma_{2|1} = \Sigma_{22} - \Sigma_{21} \Sigma_{11}^{-1} \Sigma_{12}$$

Problem 9 [3 points] Give a graphical interpretation for the conditional obtained in the previous problem.

6 Logistic Regression

We employ a logistic regression model to classify the data which are plotted in the below figure,

$$\mathbf{P}(Y=1 \mid \mathbf{x}, w_1, w_2) = \frac{1}{1 + \exp(-w_1 x_1 - w_2 x_2)}.$$

We fit the data by the maximum likelihood approach, and minimise

$$J(\mathbf{w}) = -l(\mathbf{w}).$$

We get the decision boundary as shown in the figure, and the error of the classification is 0.

Problem 10 [3 points] Now, we regularise w_2 and minimise

$$J_0(\mathbf{w}) = -l(\mathbf{w}) + \lambda w_2^2.$$

Draw the area that the decision boundary can be and explain your work.

7 Kernels

The following informations about kernels might be helpful for solving the next two problems.

Let K_1 and K_2 be kernels on $\mathcal{X} \subseteq \mathbb{R}^n$, then the following functions are kernels:

1. $K(x, y) = K_1(x, y) + K_2(x, y)$

 $2. K(\boldsymbol{x}, \boldsymbol{y}) = \alpha K_1(\boldsymbol{x}, \boldsymbol{y}) \qquad \text{for } \alpha > 0$

3. $K(x, y) = K_1(x, y) K_2(x, y)$

4. $K(\boldsymbol{x}, \boldsymbol{y}) = K_3(\boldsymbol{\phi}(\boldsymbol{x}), \boldsymbol{\phi}(\boldsymbol{y}))$ for K_3 kernel on \mathbb{R}^m and $\boldsymbol{\phi} : \mathcal{X} \to \mathbb{R}^M$

5. $K(\boldsymbol{x}, \boldsymbol{y}) = \boldsymbol{x}^T B \boldsymbol{y}$ for $B \in \mathbb{R}^{n \times n}$ symmetric and positive semi-definite

The following identities involving the exponential function might be helpful for solving the next two problems.

$$\exp(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$
$$\exp(x) = \lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n$$
$$\exp(a+b) = \exp(a) \exp(b)$$
$$\exp(ab) = \exp(a)^b$$

Problem 11 [6 points] Let Z be a set of *finite* size. Show that the function

$$K_0(X,Y) = |X \cap Y|$$

is a valid kernel, provided that $X \subseteq Z$ and $Y \subseteq Z$. Remember that Z is finite, i.e. $Z = \{z_1, z_2, \dots, z_N\}$.

Problem 12 [4 points] Again, let Z be a set of *finite* size. Show that the function

$$K(X,Y) = 2^{|X \cap Y|}$$

is a valid kernel, provided that $X \subseteq Z$ and $Y \subseteq Z$.

Even if you did not succeed in the previous exercise, you may assume that $K_0(X,Y)$ is a valid kernel.

8 Constrained Optimisation

Suppose we have 40 pieces of raw material. Toy A can be made of one piece material with 3 Euro machining fee. A larger toy B can be made from two pieces of material with 5 Euro machining fee.

We can sell x pieces of toy A for 20 - x Euro each, and y pieces of toy B for 40 - y Euro each.

From our experience, toy B is more popular than toy A; therefore, we will produce not more of toy A than of toy B. To get the maximum profit, we want to calculate the number toy A and toy B that we should produce.

Problem 13 [3 points] Write down the problem using the primal optimisation method.

Pr W	roblem 14	[3 points] these cond	The prolitions (but	oblem can k don't solv	pe solved use them).	sing Karusl	n–Kuhn–Tuc	ker (KKT)	conditions