
Inference in latent variable models
Variational Bayes, expectation maximisation, and the variational

auto-encoder

Maximilian Soelch

Technische Universität München

Recommended/Further Readings:

I Bishop, PRML, Chapters 9, 10.1

I Blei, David M., Alp Kucukelbir, and Jon D. McAuliffe. ”Variational inference: A
review for statisticians.” arXiv preprint arXiv:1601.00670 (2016).

I Doersch, Carl. ”Tutorial on variational autoencoders.” arXiv preprint
arXiv:1606.05908 (2016).

I This blog (for visuals).

I The papers mentioned throughout these slides.

1 / 25

https://arxiv.org/abs/1601.00670
https://arxiv.org/abs/1601.00670
https://arxiv.org/abs/1606.05908
https://arxiv.org/abs/1606.05908
http://ijdykeman.github.io/ml/2016/12/21/cvae.html

Consider the following data:

MNIST handwritten digits
http://deeplearning.net/data/mnist/

We would like to do maximum likelihood:

θMLE = argmax
θ
p(D | θ)

What might be the underlying distribution p(x | θ)?

Our standard set of distributions is not expressive enough:

2 / 25

http://deeplearning.net/data/mnist/

There are latent (hidden) factors present.

They are not directly observable (for a machine):



0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0.184 0.117 0.992 0.051 0. 0.
0. 0. 0. 0. 0. 0. 0.988 0.988 0.629 0.988 0.992 0. 0. 0.
0. 0. 0. 0. 0. 0.543 0.871 0. 0.141 0.992 0.414 0. 0. 0.
0. 0. 0. 0. 0. 0.027 0.988 0.312 0.988 0.426 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0.988 0.988 0.699 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.668 0.988 0.988 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0.363 0.992 0.051 0.988 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0.992 0. 0.422 0.992 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0.988 0.75 0.988 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0.461 0.746 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.



If we knew the latent factors, our lives would get easier:

3 / 25

p(x | x shows a 7) is easier!

This leads to the graphical model perspective.

p(x | θ) =
∫
p(x, z | θ) dz

=

∫
p(x | θ)p(z | x, θ) dz

=

∫
p(z | θ)p(x | z, θ) dz

z

x

Interpretation: We do MLE on a model where some data is missing (e. g.,
the abstract digit).

4 / 25

A very simple model: z ∈ {0, . . . , 9} indicates the digit.

I p(z = k) = πk, with πk ≥ 0,
∑
k πk = 1

I p(x | z = k) = N (x | µk,Σk)

In total, we get a Gaussian Mixture Model with 10 components:

p(x | θ) =
∫
p(x, z | θ) dz =

9∑
k=0

πkN (x | µk,Σk)

θ = {πk,µk,Σk | k = 0, . . . , 9}

But now:

argmax
θ

ln p(D | θ) =
N∑
n=1

ln

9∑
k=0

πkN (xn | µk,Σk)

A sum (or an integral) inside the logarithm! No closed-form solution, no
easy optimization.

5 / 25

Every component is a simple Gaussian distribution. If we knew z, we
could circumvent the inner integral and solve for each component.
With Nk =

∑N
n=1 1(zn = k) (number of samples in class k):

µMLE
k =

1

Nk

N∑
n=1

1(zn = k)xn

πMLE
k =

Nk
N

The closest we can get is the posterior

rnk(θ) ≡ p(zn = k | xn, θ).

This closes a cycle:

I We need the rnk’s to optimize for θ,

I and we need θ to compute the rnk’s.

This makes it hard (if not impossible) to find closed-form solutions.

6 / 25

Idea: Use the cycle!

rnk
(
θ(t)
)

θ(t+1)

fix rnk, optimise θ

fix θ, update rnk

Problem: rnk
(
θ(t)
)

is not the MLE posterior value, which is rnk (θMLE).

Our hope would be: rnk
(
θ(t)
) t→∞−−−→ rnk (θMLE)

To analyse this, it is beneficial to assume that we have an oracle q(z).
(In our case up there, the oracle has structure. This will be nice for
implementation, but the subsequent analysis is more general.)

7 / 25

Something interesting happens:

ln p(x | θ) =
∫
q(z) ln

(
p(x | θ)q(z)

q(z)

)
dz

=

∫
q(z) ln

p(x, z | θ)
q(z)

dz︸ ︷︷ ︸
1

+

∫
q(z) ln

q(z)

p(z | x, θ)
dz︸ ︷︷ ︸

2

2 = KL(q(z) || p(z | x, θ)) ≥ 0 (and 0 iff q(z) ≡ p(z | x, θ))

Since ln p(x | θ) is constant w. r. t. q, this implies 1 ≤ ln p(x | θ).

1 =

∫
q(z) ln

p(x, z | θ)
q(z)

dz = Eq(z)[ln p(x, z | θ)] + H(q)︸︷︷︸
entropy

= LELBO(q, θ)

LELBO(q, θ) is the (evidence) lower bound, a.k.a. variational lower
bound, a.k.a. (variational) free energy.

8 / 25

Remember that q(z) is supposed to mimic p(z | x, θ).
One way of formalising this would be finding a q that minimises

KL(q(z) || p(z | x, θ)).

We are minimising an objective w. r. t. a function q. This is called
a variational approach.

A very important observation:

ln p(x | θ)︸ ︷︷ ︸
const. wrt. q

= LELBO(q, θ) + KL(q(z) || p(z | x, θ))︸ ︷︷ ︸
≥0

⇒ argmin
q

KL(q(z) || p(z | x, θ)) = argmax
q
LELBO(q, θ)

9 / 25

Nice theoretical insight, but why this detour?

Recall rnk
(
θ(t)
)
= p
(
zn = k | xn, θ(t)

)
.

rnk
(
θ(t)
)

is the (trivial) optimal solution to

argmin
q

KL
(
q(z) || p

(
z | x, θ(t)

))
= argmax

q
LELBO

(
q, θ(t)

)
.

One of the steps in our cycle, the update of the rnk’s, is exactly
equivalent to coordinate ascent of LELBO in q!

10 / 25

Idea: Maybe the second step is equivalent to coordinate ascent in the
second component θ?

argmax
θ
LELBO (q, θ)

= argmax
θ

Eq(z)[ln p(x, z | θ)] + H(q)︸︷︷︸
const. wrt. θ

=argmax
θ

Eq(z)[ln p(x, z | θ)]

That is exactly the second step!

11 / 25

Our intuitive approach

rnk
(
θ(t)
)

θ(t+1)

fix rnk, optimise θ

fix θ, update rnk

turns out to do alternating coordinate ascent on

LELBO(q, θ) ≤ p(D | θ) ≤ p(D | θMLE).

I Coordinate ascent guarantees that LELBO

(
rnk

(
θ(t)
)
, θ(t)

)
increases monotonically with t. Since it is bounded by the
constant p(D | θMLE), our algorithm is guaranteed to
converge.

I In the global optimum, θ(∞) = θMLE.

12 / 25

This alternating procedure is the expectation-maximisation (EM)
algorithm.

rnk
(
θ(t)
)

θ(t+1)

M-step

E-step

In the maximisation step, we do argmaxθ Eq(z)[ln p(x, z | θ)].
Why expectation step, we are also doing a maximisation in this step?

I This maximisation can sometimes be solved in closed form.

I We already saw that rnk
(
θ(t)
)
, the posterior at θ(t), is optimal.

I The maximisation reduces to computing Eq(z)[ln p(x, z | θ)] for a
known q(z) E-step.

Since EM was historically developed for special cases where this holds,
the somewhat misleading name has become standard.

13 / 25

A visualisation of iterative lower bound optimization.

θ (0)θ (1)θ (2)θ (∞)

lnp(D | θ)

LELBO

(
q, θ (0)

)

θ (0)θ (1)θ (2) θ (∞)

lnp(D | θ)

LELBO

(
q, θ (0)

)

Initialisation matters!

14 / 25

Some closing remarks on EM.

Nice features:

I We can do MLE on models where we cannot find a closed-form
solution.

I Convergence to a local optimum is guaranteed.

But there are issues:

I Avoid bad local minima via multiple restarts.

I How to initialize?

I How to choose hyper-parameters such as the number of mixture
models? (Overfitting, underfitting, ...)

For the rest of this lecture, we will deal with one issue:
What if the posterior is not known explicitly? E-step?

15 / 25

Latent variables z are often interpreted as the quintessential infor-
mation. The posterior p(z | x, θ) then is the holy grail of many
areas in machine learning.

A lot of supervised learning techniques implicitly try to learn this from
labeled data.

We saw that EM can even learn it in an unsupervised fashion—but we
explicitly needed the posterior for a given θ, otherwise the E-step does
not work.

16 / 25

What is so hard about the posterior?

p(z | x, θ) = p(x, z | θ)
p(x | θ)

=
p(x | z, θ)p(z | θ)∫

p(x, z | θ) dz

Typically, the generative model (the numerator) is easy to formulate, the
normalizing constant is at best cumbersome to obtain.

In our digit example, marginalisation of z was easy—because we only
incorporated the digit as quintessential information. What about
rotation? Skewness? ...?

Or even better: What if we do not manually hard-code structure?
 Why not use a neural network for p(x | z, θ)?

17 / 25

We conclude that the posterior in general is hard to obtain.
Now remember:

argmin
q

KL(q(z) || p(z | x, θ)) = argmax
q
LELBO(q, θ)

The E-step explicitly did the lhs, and by equivalence implicitly the rhs.

LELBO(q, θ) =

∫
q(z) ln

p(x, z | θ)
q(z)

dz =

∫
q(z) ln

p(x | z, θ)p(z)
q(z)

dz

= Eq(z)[ln p(x | z, θ)]−KL(q(z) || p(z))

The ELBO does not explicitly contain the posterior, but implicitly
approximates it if the feasible region for q is large enough!

18 / 25

Caveat: What is the posterior of p(x | z, θ) if it is implemented by a
neural net?

We need a set of parametrized (learnable) functions that cover a wide
range of functions.

Neural networks! Set q(z) ≡ q(z | x, φ), where the latter is a neural
network with parameters φ, input x. The output will be distribution
parameters of z, e. g., q(z | x, φ) = N (z | µφ(x),Σφ(x))—Gaussian
distributions with nonlinear dependence on the input.

19 / 25

Let us put together the parts. We have:

I a neural network mapping z onto distributions over x with
parameters θ—the generative model p(x | z, θ),

I a neural network mapping x onto distributions over z with
parameters φ—the recognition model q(z | x, φ),

I a loss function LELBO(q, θ) ≡ LELBO(φ, θ) that captures both
parameter sets and has intriguing theoretical properties.

These three parts amount to the variational auto-encoder (VAE).

I Kingma, Diederik P., and Max Welling. “Auto-encoding variational
bayes.” arXiv preprint arXiv:1312.6114 (2013).

I Rezende, Danilo Jimenez, Shakir Mohamed, and Daan Wierstra.
“Stochastic backpropagation and approximate inference in deep
generative models.” arXiv preprint arXiv:1401.4082 (2014).

20 / 25

https://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1401.4082

Deterministic auto-encoder vs. variational auto-encoder:

neural net

neural net

neural net

neural net

samples z ∼ q(z | x, φ)

The bottleneck now comes from stochasticity through sampling rather
than dimensionality reduction.

LELBO(q, θ) = Eq(z)[ln p(x | z, θ)]−KL(q(z) || p(z))

The ELBO rewards good reconstruction (first term), and comes with an
inbuilt regulariser (the KL) that prevents collapsing to the deterministic
autoencoder.

21 / 25

One more obstacle: Backpropagation through random sampling?

Solution: Reparametrisation.

z ∼ N (µ,Σ) z = µ+ Lε, ε ∼ N (0, I), Σ = LLT

This allows taking partial derivatives w. r. t. µ and Σ.

neural net

neural net

z = µ+ Lε samples ε ∼ N (0, I)

22 / 25

Results:

For visualization, the model only uses two latent variables. With a higher
number, the model trains faster with even better results.

If this slide is not animated, you might want to try a different pdf reader.

23 / 25

Results from our lab:

Karl, Maximilian, Maximilian Soelch, Justin Bayer, and Patrick van der
Smagt. “Deep Variational Bayes Filters: Unsupervised Learning of State
Space Models from Raw Data.” arXiv preprint arXiv:1605.06432 (2016).

If this slide is not animated, you might want to try a different pdf reader.

24 / 25

https://arxiv.org/abs/1605.06432

What we learned

I Latent variables and graphical models.

I Gaussian mixture models.

I Variational techniques and the evidence lower bound.
I Expectation maximisation.
I Variational auto-encoder.

I Intriguing properties of the ELBO.

I The importance of the posterior distribution of latent factors
given data.

I Reparametrisation.

25 / 25

	anm0:
	anm1:

