Unsupervised Learning

Technische Universität München

Unsupervised vs Supervised

Supervised learning aims to map inputs to targets with y = f(x), or in a probabilistic framework it models p(y|x).

Unsupervised learning can be seen as modelling p(x).

Simple structure in data x:

- 1. Reduce to latent state z
- 2. Unsupervised learning is all about compression
- 3. Learning aims to find generative processing mapping simple distribuition p(z) to p(x)

In the following we will consider the following simple graphical model as our generative model:

```
Latent distribution: p(z)
```

```
Generative transformation: p(\boldsymbol{x}|\boldsymbol{z})
```

Transforming a simple latent distribution into the observable space. First sampling from p(z) and transforming it with p(x|z).

Problem: z corresponding to specific x usually unknown

Example: Clustering

- 1. Class label as latent state
- 2. Compression of datapoint to single class

Synthetic data obtained by random translations and rotations of one digit image. Resulting Images are 100×100 pixels.

Figure from Bishop's PRML

Intrinsic dimensionality

10,000 dimensional data space, but only 3 degrees of freedom.

This low dimensionality is inherent to most data-sets.

Data points live on a 3 dimensional (non-linear) subspace.

Translation and rotation parameters are *latent* variables.

Distributed representation (vs. local representation with MoG): all componentes of latent variable are used at the same time to represent the data.

Uses of Models

We are not only interested in generating sample from the observations space.

- Inference of latent z from datapoint x
- Density $p(\boldsymbol{x})$
- Correction/impainting with information about $p(\boldsymbol{x})$
- Likelihood for comparing models (only possible for probabilistic models)

Problems:

- Parameters of p(x) unknown
- p(x) multi-modal and complicated
- Inversion of $p(\boldsymbol{x}|\boldsymbol{z})$ unknown

Why simple linear models?

We need to be able to compute p(x) and p(z|x). In some cases this can be done analytically, in other cases iterative learning becomes harder with increasing complexity of the generative model.

Factor Analysis (FA)

$$oldsymbol{x} \in \mathbb{R}^d, \qquad oldsymbol{z} \in \mathbb{R}^l, \qquad l \ll d$$

$$p(\boldsymbol{z}) = \mathcal{N}(\boldsymbol{z}|\boldsymbol{0}, \boldsymbol{I}) \tag{1}$$

(*simple* latent distribution without loss of generality!)

$$p(\boldsymbol{x}|\boldsymbol{z}) = \mathcal{N}(\boldsymbol{x}|\boldsymbol{W}\boldsymbol{z} + \boldsymbol{\mu}, \boldsymbol{\Psi})$$
(2)

 \pmb{W} : factor loading matrix, $\mathbb{R}^{d imes l}$

 Ψ : diagonal matrix (*uniquenesses*), $\mathbb{R}^{d \times d}$

Matrix Factorization

Likelihood for FA

One of the properties we would like to use:

$$p(\boldsymbol{x}) = \int p(\boldsymbol{x}|\boldsymbol{z}) p(\boldsymbol{z}) d\boldsymbol{z} = \mathcal{N}(\boldsymbol{x}|\boldsymbol{\mu}, \boldsymbol{C})$$
(3)

with

$$\boldsymbol{C} = \boldsymbol{W} \boldsymbol{W}^T + \boldsymbol{\Psi} \tag{4}$$

why? (see Multivariate Gaussians)

or $(oldsymbol{\psi} \sim \mathcal{N}(\mathbf{0}, oldsymbol{\Psi}))$:

$$E(\boldsymbol{X}) = E(\boldsymbol{W}\boldsymbol{z} + \boldsymbol{\mu} + \boldsymbol{\psi}) = \boldsymbol{\mu}$$
(5)

$$Cov(\boldsymbol{X}) = E((\boldsymbol{W}\boldsymbol{z} + \boldsymbol{\psi})(\boldsymbol{W}\boldsymbol{z} + \boldsymbol{\psi})^{T}) = E(\boldsymbol{W}\boldsymbol{z}\boldsymbol{z}^{T}\boldsymbol{W}^{T} + \boldsymbol{\psi}\boldsymbol{\psi}^{T}) = \boldsymbol{W}\boldsymbol{W}^{T} + \boldsymbol{\Psi}$$
(6)

Statistically more efficient than a full covariance Gaussian: ${\cal O}(ld)$ vs. ${\cal O}(d^2).$

Likelihood for FA

FA defines a density on X. Computing the likelihood for a data point x requires C^{-1} and |C|.

$$\boldsymbol{C}^{-1} = \boldsymbol{\Psi}^{-1} - \boldsymbol{\Psi}^{-1} \boldsymbol{W} (\boldsymbol{I}_{l} + \boldsymbol{W}^{T} \boldsymbol{\Psi}^{-1} \boldsymbol{W})^{-1} \boldsymbol{W}^{T} \boldsymbol{\Psi}^{-1}$$
(7)
(via Shermann-Morrison-Woodbury formula. $O(l^{3})$.)

$$|C| = |I_l + W^T \Psi^{-1} W| |\Psi^{-1}|$$
(8)

(via matrix determinant lemma. $O(l^3)$.)

Computationally more efficient than a full covariance Gaussian.

Probabilistic PCA (PPCA)

Constrain FA model: $\Psi = \sigma^2 I$ and W is orthonormal.

Likelihood:

$$p(\boldsymbol{x}) = \int p(\boldsymbol{x}|\boldsymbol{z}) p(\boldsymbol{z}) d\boldsymbol{z} = \mathcal{N}(\boldsymbol{x}|\boldsymbol{\mu}, \boldsymbol{C})$$
(9)

with

$$\boldsymbol{C} = \boldsymbol{W} \boldsymbol{W}^T + \sigma^2 \boldsymbol{I}$$
(10)

Closed form solution for estimating W:

$$\boldsymbol{W} = \boldsymbol{L}_l (\boldsymbol{\Lambda}_l - \sigma^2 \boldsymbol{I})^{\frac{1}{2}} \boldsymbol{R}$$
(11)

with L_l the $d \times l$ matrix whose columns are the first l eigenvectors of the empirical covariance matrix S and Λ_l the diagonal matrix of corresponding eigenvalues (R is an arbitrary orthogonal matrix).

$$\sigma^2 = \frac{1}{d-l} \sum_{j=l+1}^d \lambda_j \tag{12}$$

PPCA captures (or models) variance along principal directions: Standardize data (unit of measurement)!

FA vs. PPCA

Compare generated samples.

Figure from Bayesian Reasoning and Machine Learning, David Barber.

Closely related to PPCA with variance going towards zero.

Find an orthogonal set of l linear basis functions $w_j \in \mathbb{R}^d$ and corresponding low-dimensional projections $z_j \in \mathbb{R}^l$ such that the average reconstruction error is minimized:

$$J = \frac{1}{N} \sum_{i} ||\boldsymbol{x} - \hat{\boldsymbol{x}}||^2$$
(13)

with $\hat{\boldsymbol{x}}_i = \boldsymbol{W} \boldsymbol{z}_i + \boldsymbol{\mu}$.

Equivalent (non obvious!) formulation: Find directions with *maximal projected variance*.

Figure from Bishop's PRML

Biggest variance along purple line is achieved when points show lowest distance to principal component (blue lines).

Solution similar to PPCA:

$$\boldsymbol{W} = \boldsymbol{L}_l \tag{14}$$

 L_l is the $d \times l$ matrix whose columns are the first l eigenvectors of S.

Note:
$$\boldsymbol{L}_{l}^{T} \boldsymbol{L}_{l} = \boldsymbol{I}_{l}$$
 but not $\boldsymbol{L}_{l} \boldsymbol{L}_{l}^{T} = \boldsymbol{I}$, unless $d = l$.

$$J = \sum_{i=l+1}^{d} \lambda_i \tag{15}$$

What should be the dimensionality of the latent embedding?

Datapoint with first four Eigenvalues.

Figure from Bishop's PRML

Figure from Bishop's PRML

Eigenfaces

Figure from Bayesian Reasoning and Machine Learning, David Barber.

Whitening/ZCA

PCA is often used as a preprocessing step.

$$\boldsymbol{z} = \boldsymbol{\Lambda}^{-\frac{1}{2}} \boldsymbol{L}_l^T (\boldsymbol{x} - \boldsymbol{\mu})$$
(16)

z is whitened, that is, the emprical covariance matrix is I.

Zero Component Analysis (ZCA) stays in the original domain:

$$\hat{\boldsymbol{x}} = \boldsymbol{L}_d (\boldsymbol{\Lambda} + \boldsymbol{\varepsilon} \boldsymbol{I})^{-\frac{1}{2}} \boldsymbol{L}_d^T (\boldsymbol{x} - \boldsymbol{\mu})$$
(17)

ICA – Independent Component Analysis

Generative model:

- ▶ some (unknown) data $s \in R^n$ (*n* independent *sources*).
- unknown *mixing* matrix $A \in \mathbb{R}^{n \times n}$.
- \blacktriangleright observed $oldsymbol{x} \in R^n$: $oldsymbol{x} = oldsymbol{As}$

Given m observations $\{x_1, x_2, \ldots, x_m\}$, can we recover the s's? Yes, if we would know $W = A^{-1}$.

ICA – Ambiguities

- Permutations
- Scaling
- Sources s_i must be *non-gaussian*.

Distribution of S must be non-gaussian. What does this mean for X?

$$p_X(\boldsymbol{x}) = p_S(\boldsymbol{W}\boldsymbol{x}) |\boldsymbol{W}| = \prod_i p_{S_i}(\boldsymbol{w}_i^T \boldsymbol{x}) |\boldsymbol{W}|$$

where \boldsymbol{w}_{i}^{T} is the *i*-th row of \boldsymbol{W} .

ICA – MLE

We can do MLE on $\{x_1, x_2, \ldots, x_m\}$ if we specify densities for the individual sources (standard examples would be $p_{S_i}(s) \approx \sigma'(s)$ or $p_{S_i}(s) \approx -\tanh'(y)$).

The loglikelihood then is

$$\ell(\boldsymbol{W}) = \sum_{i=1}^{m} \sum_{j=1}^{n} \log p_{\boldsymbol{S}_i}(\boldsymbol{w}_i^T \boldsymbol{x}) + \log |\boldsymbol{W}|$$

There is no closed form solution because of the involved non-linearities! We could find \boldsymbol{W} by e.g. gradient descent.

$$\nabla_{\boldsymbol{W}} \ell(\boldsymbol{W}) = \sum_{i=1}^{m} \left(\begin{pmatrix} 1 - 2g_1(\boldsymbol{w}_1^T \boldsymbol{x}) \\ 1 - 2g_2(\boldsymbol{w}_2^T \boldsymbol{x}_i) \\ \dots \\ 1 - 2g_n(\boldsymbol{w}_n^T \boldsymbol{x}_i) \end{pmatrix} \boldsymbol{x}_i^T + \boldsymbol{W}^{-T} \right)$$

 g_i is the antiderivative (*Stammfunktion* in german) of p_{S_i} .

Non-linear Independent Components Estimation

Inference becomes intractable with complicated generative models.

Just imagine the log determinant of the Jacobian for a deep neural network.

Solution for special network structure:

Non-linear Independent Components Estimation Laurent Dinh, David Krueger, Yoshua Bengio