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Unsupervised vs Supervised

Supervised learning aims to map inputs to targets with y = f (x ), or in a
probabilistic framework it models p(y |x ).

Unsupervised learning can be seen as modelling p(x ).

Simple structure in data x :

1. Reduce to latent state z

2. Unsupervised learning is all about compression

3. Learning aims to find generative processing mapping simple
distribuition p(z ) to p(x )



Generative Models

In the following we will consider the following simple graphical model as
our generative model:

Latent distribution: p(z )

Generative transformation: p(x |z )

Transforming a simple latent distribution into the observable space. First
sampling from p(z ) and transforming it with p(x |z ).

Problem: z corresponding to specific x usually unknown



Example: Clustering

1. Class label as latent state

2. Compression of datapoint
to single class



Synthetic data obtained by random translations and rotations of one digit
image. Resulting Images are 100× 100 pixels.
Figure from Bishop’s PRML



Intrinsic dimensionality

10, 000 dimensional data space, but only 3 degrees of freedom.

This low dimensionality is inherent to most data-sets.

Data points live on a 3 dimensional (non-linear) subspace.

Translation and rotation parameters are latent variables.

Distributed representation (vs. local representation with MoG): all
componentes of latent variable are used at the same time to represent
the data.



Uses of Models

We are not only interested in generating sample from the observations
space.

I Inference of latent z from datapoint x

I Density p(x )

I Correction/impainting with information about p(x )

I Likelihood for comparing models (only possible for probabilistic
models)

Problems:

I Parameters of p(x ) unknown

I p(x ) multi-modal and complicated

I Inversion of p(x |z ) unknown



Simple Models

Why simple linear models?

We need to be able to compute p(x ) and p(z |x ). In some cases this can
be done analytically, in other cases iterative learning becomes harder with
increasing complexity of the generative model.



Factor Analysis (FA)

x ∈ Rd , z ∈ Rl , l � d

p(z ) = N (z |0, I ) (1)

(simple latent distribution without loss of generality!)

p(x |z ) = N (x |Wz + µ,Ψ) (2)

W : factor loading matrix, Rd×l

Ψ: diagonal matrix (uniquenesses), Rd×d

Matrix Factorization



Likelihood for FA

One of the properties we would like to use:

p(x ) =

∫
p(x |z )p(z )dz = N (x |µ,C ) (3)

with
C = WW T + Ψ (4)

why? (see Multivariate Gaussians)

or (ψ ∼ N (0,Ψ)):

E (X ) = E (Wz + µ+ψ) = µ (5)

Cov(X ) = E ((Wz+ψ)(Wz+ψ)T ) = E (WzzTW T+ψψT ) = WW T+Ψ
(6)

Statistically more efficient than a full covariance Gaussian: O(ld) vs.
O(d2).



Likelihood for FA

FA defines a density on X . Computing the likelihood for a data point x
requires C−1 and |C |.

C−1 = Ψ−1 −Ψ−1W (I l +W TΨ−1W )−1W TΨ−1 (7)

(via Shermann-Morrison-Woodbury formula. O(l3).)

|C | = |I l +W TΨ−1W ||Ψ−1| (8)

(via matrix determinant lemma.O(l3).)

Computationally more efficient than a full covariance Gaussian.



Probabilistic PCA (PPCA)
Constrain FA model: Ψ = σ2I and W is orthonormal.

Likelihood:

p(x ) =

∫
p(x |z )p(z )dz = N (x |µ,C ) (9)

with
C = WW T + σ2I (10)

Closed form solution for estimating W :

W = Ll(Λl − σ2I )
1
2R (11)

with Ll the d × l matrix whose columns are the first l eigenvectors of the
empirical covariance matrix S and Λl the diagonal matrix of
corresponding eigenvalues (R is an arbitrary orthogonal matrix).

σ2 =
1

d − l

d∑
j=l+1

λj (12)

PPCA captures (or models) variance along principal directions:
Standardize data (unit of measurement)!



FA vs. PPCA

Compare generated samples.

Figure from Bayesian Reasoning and Machine Learning, David Barber.



PCA

Closely related to PPCA with variance going towards zero.

Find an orthogonal set of l linear basis functions w j ∈ Rd and
corresponding low-dimensional projections z j ∈ Rl such that the average
reconstruction error is minimized:

J =
1

N

∑
i

||x − x̂ ||2 (13)

with x̂ i = Wz i + µ.

Equivalent (non obvious!) formulation: Find directions with maximal
projected variance.



Figure from Bishop’s PRML

Biggest variance along purple line is achieved when points show lowest
distance to principal component (blue lines).



Solution similar to PPCA:
W = Ll (14)

Ll is the d × l matrix whose columns are the first l eigenvectors of S .

Note: LT
l Ll = I l but not LlL

T
l = I , unless d = l .

J =

d∑
i=l+1

λi (15)

What should be the dimensionality of the latent embedding?



Datapoint with first four Eigenvalues.

Figure from Bishop’s PRML



Figure from Bishop’s PRML



Eigenfaces

Figure from Bayesian Reasoning and Machine Learning, David Barber.



Whitening/ZCA

PCA is often used as a preprocessing step.

z = Λ−
1
2LT

l (x − µ) (16)

z is whitened, that is, the emprical covariance matrix is I .

Zero Component Analysis (ZCA) stays in the original domain:

x̂ = Ld(Λ + εI )−
1
2LT

d (x − µ) (17)



ICA – Independent Component Analysis

Generative model:

I some (unknown) data s ∈ Rn (n independent sources).

I unknown mixing matrix A ∈ Rn×n .

I observed x ∈ Rn : x = As

Given m observations {x 1,x 2, . . . ,xm}, can we recover the s’s? Yes, if
we would know W = A−1.



ICA – Ambiguities

I Permutations

I Scaling

I Sources s j must be non-gaussian.

Distribution of S must be non-gaussian. What does this mean for X ?

pX (x ) = pS (Wx )|W | =
∏
i

pS i (w
T
i x )|W |

where wT
i is the i -th row of W .



ICA – MLE

We can do MLE on {x 1,x 2, . . . ,xm} if we specify densities for the
individual sources (standard examples would be pS i

(s) ≈ σ′(s) or
pS i

(s) ≈ − tanh′(y)).

The loglikelihood then is

`(W ) =

m∑
i=1

n∑
j=1

log pS i (w
T
i x ) + log |W |

There is no closed form solution because of the involved non-linearities!
We could find W by e.g. gradient descent.

∇W `(W ) =

m∑
i=1




1− 2g1(w
T
1 x )

1− 2g2(w
T
2 x i)

. . .
1− 2gn(w

T
n x i)

xT
i +W−T


gi is the antiderivative (Stammfunktion in german) of pS i

.



Non-linear Independent Components Estimation

Inference becomes intractable with complicated generative models.

Just imagine the log determinant of the Jacobian for a deep neural
network.

Solution for special network structure:

Non-linear Independent Components Estimation
Laurent Dinh, David Krueger, Yoshua Bengio


