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Reading Material:

”Gaussian Processes for Machine Learning”by Rasmussen, Williams [ch. 1, 2]

Note: These slides are adapted from slides originally by Daniala Korhammer
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Some unknown process
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What values can we assume f(1.8) and f(3.5) to be?
How certain are we about this?
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Some functions that are consistent with our data
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We’re quite certain about f(1.8) because we know the function values of
some data points that are close to it. But we don’t know anything about
f(3.5).
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Gaussian for the distribution over vectors

w ∼ N (µ,Σ)
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Definition of a Gaussian process

Similarly, we can use a Gaussian process to describe a distribution over
functions:

f ∼ GP(m,K)

where m : X → R is the mean function

m(x) = E[f(x)]

and K : X 2 → R is the covariance function

K(x,x′) = E[(f(x)−m(x))(f(x′)−m(x′)].

For consistency with the kernel lecture, we denote the covariance function K. In the literature you will also find κ or k.
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GPs define multivariate Gaussian distributions

We have data points X = [xT1 , · · · ,xTn ]T and are interested in their
function values f(X) = (f(x1), . . . , f(xn))

T .

A Gaussian process is a collection of random variables (RV), any
finite number of which have joint Gaussian distribution.

f is one such subset of RV and has (prior) joint Gaussian distribution:

f(X) ∼ N (m(X),K(X,X)),

6 / 24



Idea of the Gaussian Process (informally!)

Our basic assumption is that if vectors x and x′ are similar, then f(x)
and f(x′) should be similar, too.

The covariance function K(x,x′) returns a measure of the similarity of x
and x′ that also encodes how similar f(x) and f(x′) should be.

The mean function m(x) encodes the a priori expectation of the
(unknown) function.

For inference we condition the unknown function values on the known
ones. If there are no “similar” known values, then the mean function
dominates the result.
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Setting the mean function

In most cases we simply use

E[f(x)] = m(x) = 0,

which makes sense especially if we normalize the output to zero mean.
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Formal properties of the covariance function

The covariance function K(x,x′) needs to be a measure of similarity
between x and x′. This is the basic assumption which makes inference
possible, since we assume that similar data points have similar function
values.

K needs to be symmetric

K(x,x′) = K(x′,x)

and positive semidefinite∫ +∞

−∞

∫ +∞

−∞
K(x,x′)g(x)g(x′)dxdx′ ≥ 0,

for all g ∈ L2 (Mercer’s theorem).
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Setting the covariance function

The “default” covariance function is the squared exponential kernel

K(x,x′) = σ2 exp

(
− (x− x′)T (x− x′)

2l2

)
, (1)

where l varies the length (or width) and σ the height of the kernel.

Note that x can be in any domain, if K defines a good measure of the
similarity of two vectors x and x′.

The covariance function is what drives the behavior of a GP!
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What is encoded in the covariance matrix?

4-datapoint example with X = {0, 0.2, 1, 3} and a simple squared
exponential kernel with l = 1 and σ = 1:

K(X,X) =

K(x1,x1) · · · K(x1,x4)
...

. . .
...

K(x4,x1) · · · K(x4,x4)



=


1 0.98 0.61 0.011

0.98 1 0.73, 0.020
0.61 0.73 1 0.14
0.011 0.020 0.14 1


Remember: It is not X, over which the Gaussian is defined, but f(X)!
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What is encoded in the covariance matrix?
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If two points are similar (left plot), they covary strongly. Knowing about
f1, reveals a lot about f2.

If two points are far apart (right plot), their covariance is small. Knowing
the value of f1 reveals little about f4.

In the extreme case where the covariance is 0, the conditional and
marginal distributions are the same.
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Drawing samples from an MVN

Generate a D-dimensional vector u by drawing D samples
(independently) from N (0, 1).

Perform the Cholesky decomposition Σ = LLT , where L is a lower
triangular matrix.

Compute y = µ+Lu, where y ∼ N (µ,Σ).

Sampling from the prior distribution of a GP at arbitrary points X∗

fpri(X∗) ∼ GP(m(X∗),K(X∗,X∗))

is equivalent to sampling from an MVN:

fpri(X∗) ∼ N (m(X∗),K(X∗,X∗)) .
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Drawing samples from the prior
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10 samples from the prior distribution using a squared exponential kernel (Eq. 1) with l = 0.2 and
σ = 2.5. The dark grey line indicates m(x), the gray area indicates the 95% confidence region,

i.e. m(x)± 2
√
K(x, x) = m(x)± 2σ.
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Inference with GPs - noise-free case

We have training data X (of size n×D), corresponding observations
f = f(X), and test data points X∗ (n∗ ×D) for which we want to infer
function values f∗ = f(X∗).

The GP defines a joint distribution for p(f ,f∗ |X,X∗):(
f
f∗

)
∼ N

([
µ
µ∗

]
,

[
K K∗
KT
∗ K∗∗

])
,

with µ =m(X),µ∗ =m(X∗),

K =K(X,X), K∗ =K(X,X∗), K∗∗ =K(X∗,X∗).

To infer f∗ or rather
p (f∗ |X∗,X,f) ,

we need to apply the rules for conditioning multivariate Gaussians.
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Conditionals of an MVN
Suppose y has joint Gaussian distribution:

y =

[
y1

y2

]
∼ N

(
µ =

[
µ1

µ2

]
,Σ =

[
Σ11 Σ12

Σ21 Σ22

])

The posterior conditional p(y2 | y1)
is then given by

y2|y1 ∼ N (µ2|1,Σ2|1)

µ2|1 = µ2 + Σ21Σ
−1
11 (y1 − µ1)

Σ2|1 = Σ22 −Σ21Σ
−1
11 Σ12
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Inference with GPs - noise-free case (2)
Applying the above MVN conditionals to our problem yields:

f∗|f ,X,X∗ ∼ N
(
µ∗ +K

T
∗K

−1(f − µ),K∗∗ −KT
∗K

−1K∗

)
We can draw samples from this distribution or compute the expectation:
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10 samples from the posterior distribution using a squared exponential kernel (Eq. 1) with l = 0.2
and σ = 2.5. The dark grey line indicates E[f(x)], the grey area indicates the 95% confidence
region.
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Inference with GPs - noisy case

In the noise-free case (with some kernels, such as the SE kernel) the GP
acts as an interpolator between observed values.

More often than not the assumption that our observations yi correspond
exactly to the function values f(xi) = fi is wrong.

We will now instead assume, that we observe a noisy version of the
underlying function:

yi = fi + ε,

where ε ∼ N (0, σ2
y) is additive iid Gaussian noise.
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Inference with GPs - noisy case (2)

Let’s look at some GP with m(x) = 0 and K(x,x′) = 1 if x = x′.

In the noise-free case, where yi = fi:(
yi
fi

)
∼ N

(
0,

(
1 1
1 1

))
,

then yi|fi ∼ N (fi, 0) is a degenerate Gaussian with zero variance.

In the noisy scenario we want yi|fi ∼ N (fi, σ
2
y), so we assume instead:(

yi
fi

)
∼ N

(
0,

(
1 + σ2

y 1
1 1

))
.
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Inference with GPs - noisy case (3)

We can easily extend this idea to

[
y

f(X∗) = f∗

]
for arbitrary X∗. Since

the individual noise terms ε are independent we have to add a scaled
identity matrix σ2

yI.

The joint distribution in the noisy case is then[
y
f∗

]
∼ N

([
µ
µ∗

]
,

[
K + σ2

yI K∗
KT
∗ K∗∗

])
,

and the conditional (predictive) distribution

f∗|y,X,X∗ ∼ N (µ∗ +K
T
∗ [K + σ2

yI]
−1(y − µ),

K∗∗ −KT
∗ [K + σ2

yI]
−1K∗).
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Inference with GPs - noisy case (4)

Obviously, we will use the expectation as our point prediction:

f̂∗ = E[f∗|X,y,X∗] = µ∗ +K
T
∗ [K + σ2

yI]
−1(y − µ)

cov(f∗) =K∗∗ −KT
∗ [K + σ2

yI]
−1K∗.
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E[f(x)], confidence region and two samples. σy = .5, other parameters as before.
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A Gaussian Process is a non-parametric model

The distinction between non-parametric and parametric models is not
always clear. One of the definitions:

The number of parameters in a parametric model is fixed before training,
while in non-parametric models it grows with the number of training
samples.

Non-parametric models often require no or little training (e.g., kNN),
while for parametric models (e.g., Linear Regression) training is typically
more expensive than inference.

GPs are an example of a non-parametric model.
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Influence of hyper parameters
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l = 0.2, σ = 2.5
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l = 0.4, σ = 2.5

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
x

−10

−5

0

5

10

f
(x

)

l = 0.2, σ = 1.25
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l = 0.4, σ = 1.25

10 samples from the prior distribution using a squared exponential kernel (Eq. 1) with different
settings for l and σ. The dark grey line indicates m(x), the gray area indicates the 95%

confidence region, i.e. m(x)± 2
√
K(x, x) = m(x)± 2σ.
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What we learned

• Gaussian Processes: a probabilistic model that can fit arbitrary
functions

• Mean and covariance function

• Inference in the noise-free and noisy case

Out of scope:

• Gaussian processes for classification

• Learning hyper parameters (e.g., parameters of the covariance
function, noise)

• Handling of large data sets
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