optimisation in neural networks

Patrick van der Smagt

What is optimisation?

We have a model $p_{\mathbf{w}}(z \mid x)$. This can, e.g., be a neural network.
We want to minimise the loss

$$
\mathcal{L}(\mathbf{w})=-\log \prod_{i} p_{\mathbf{w}}\left(z_{i} \mid x_{i}\right)
$$

by finding better values of \mathbf{w}.

How do we do optimisation?

- if finding the best \mathbf{w} is a convex problem, good methods exist (remember SVD from linear algebra).
- In general, finding the best \mathbf{w} is not a convex problem. Only incremental methods are known.

Convex optimisation problems

Practical example: $\left\{\left(x_{i}, z_{i}\right)\right\}=\{(0,1) ;(1,2.1) ;(2,2.9)\}$.
Our model: $y_{\mathbf{w}}(x)=a x+b$ with $\mathbf{w}=(a, b)$; the MLE loss is

$$
\mathcal{L}(\mathbf{w})=\sum_{i}\left(y_{\mathbf{w}}\left(x_{i}\right)-z_{i}\right)^{2}
$$

How do we find the minimum of \mathcal{L} ? It is there where $\partial \mathcal{L} / \partial w_{i}=0$.

$$
\begin{gathered}
\frac{\partial \mathcal{L}_{i}(\mathbf{w})}{\partial w_{1} \equiv a}=2 x_{i}\left(b+a x_{i}-z_{i}\right)=0 \\
\frac{\partial \mathcal{L}_{i}(\mathbf{w})}{\partial w_{2} \equiv b}=2\left(b+a x_{i}-z_{i}\right)=0
\end{gathered}
$$

We can solve that!

Numerical solution: $a=0.95, b=1.05$.

What if. . .

$$
y_{(a, b, c)}(x)=a \exp \left(-b(\mathbf{x}-c)^{2}\right)+d
$$

We can't find a closed-form solution for that!

$$
\begin{aligned}
& 2 e^{-b c^{2}}\left(a e^{-b c^{2}}-1\right)+2 e^{-b(1-c)^{2}}\left(a e^{-b(1-c)^{2}}-2.1\right)+ \\
& 2 e^{-b(2-c)^{2}}\left(a e^{-b(2-c)^{2}}-2.9\right)=0
\end{aligned}
$$

$$
\begin{aligned}
-2 a c^{2} e^{-b c^{2}}\left(a e^{-b c^{2}}-1\right)-2 a(1-c)^{2} e^{-b(1-c)^{2}}\left(a e^{-b(1-c)^{2}}-2.1\right)- \\
2 a(2-c)^{2} e^{-b(2-c)^{2}}\left(a e^{-b(2-c)^{2}}-2.9\right)=0
\end{aligned}
$$

$-4 a b c e^{-b c^{2}}\left(a e^{-b c^{2}}-1\right)+4 a b(1-c) e^{-b(1-c)^{2}}\left(a e^{-b(1-c)^{2}}-2.1\right)+$

$$
4 a b(2-c) e^{-b(2-c)^{2}}\left(a e^{-b(2-c)^{2}}-2.9\right)=0
$$

$c=-1$

But

We can compute $\partial \mathcal{L}(\mathbf{w}) / \partial w_{i}$

the value of \mathcal{L}

we are interested in finding $\arg \min _{w} \mathcal{L}$

using local information $\mathcal{L}(\mathbf{w})$

we are interested in finding $\arg \min _{w} \mathcal{L}$
we usually only have local information

using local information $\mathcal{L}(\mathbf{w})$ as well as $\partial \mathcal{L}(\mathbf{w}) / \partial w$

we are interested in finding $\arg \min _{w} \mathcal{L}$
we usually only have local information

using the gradient \mathbf{g} of \mathcal{L}

The direction \mathbf{u} in which to optimise is given by the gradient: $\mathbf{u}=-\mathbf{g}$

Searching the minimum by repeated evaluation of \mathcal{L} and $\mathbf{g} \equiv \nabla \mathcal{L}$. $-\mathbf{g}$ gives us a direction \mathbf{u} in which we want to optimise.
We change the parameter vector as follows:

$$
\begin{align*}
\mathbf{u}_{i} & =-\mathbf{g}_{i} \tag{1}\\
\mathbf{w}_{i+1} & =\mathbf{w}_{i}+\alpha \mathbf{u}_{i} \tag{2}
\end{align*}
$$

we call \mathbf{u} the search direction
we call α the learning parameter or step size
we call this method steepest descent or gradient descent
it belongs to the class of greedy algorithms

the value of α

a too small value for α has two drawbacks:

- we find the minimum more slowly
- we end up in local minima or saddle/flat points

the value of α

a too large value for α has one drawback:

- you may never find a minimum; oscillations usually occur

we only need 2 steps to overshoot!

putting a trace on \mathbf{u}

a: $\mathbf{u}=-\mathbf{g}$; small α;
b: $\mathbf{u}=-\mathbf{g}$; large α;
c:

$$
\begin{align*}
\mathbf{u}_{0} & =-\mathbf{g}_{0} \tag{3}\\
\mathbf{u}_{i} & =-\mathbf{g}_{i}+\beta \mathbf{u}_{i-1} \tag{4}\\
& =-\mathbf{g}_{i}-\beta \mathbf{g}_{i-1}-\beta^{2} \mathbf{g}_{i-2}-\beta^{3} \mathbf{g}_{i-3} \cdots \tag{5}\\
\mathbf{w}_{i+1} & =\mathbf{w}_{i}+\alpha \mathbf{u}_{i} \tag{6}
\end{align*}
$$

we call α the learning rate we call β the momentum we usually take $\beta \gg \alpha$

trick: momentum

How do we choose α and β ? if, for the sake of the argument, assume that $\mathbf{g} \equiv \nabla E$ does not change:

$$
\begin{aligned}
\Delta \mathbf{w} & =-\alpha \mathbf{g}\left(1+\beta+\beta^{2}+\ldots\right) \\
& =-\frac{\alpha}{1-\beta} \mathbf{g}
\end{aligned}
$$

Assuming a perfect ∇E, the best values for α and β are when

$$
\frac{\alpha}{1-\beta}=1 \quad \Rightarrow \quad \alpha+\beta=1
$$

Typically we choose α small and β large (of course, $\alpha, \beta>0$).

bird's eye view

optimising

following the gradient is not always the best choice

Close to minima, it appears that Loss functions are close to quadratic

condition of the Hessian

Condition = largest EV / smallest EV

Condition 5

Condition 100

What does H look like?
A large condition number means that some directions of H are very steep compared to others. In neural networks, a condition of 10^{10} is not uncommon.

A class of optimisers (CG, Adam, rprop, adadelta, ...) deal with such H.

