
optimisation in neural networks

Patrick van der Smagt

1 / 20



What is optimisation?

We have a model pw(z | x). This can, e.g., be a neural network.

We want to minimise the loss

L(w) = − log
∏
i

pw(zi | xi)

by finding better values of w.

2 / 20



How do we do optimisation?

I if finding the best w is a convex problem, good methods exist
(remember SVD from linear algebra).

I In general, finding the best w is not a convex problem.
Only incremental methods are known.

3 / 20



Convex optimisation problems

Practical example: {(xi, zi)} = {(0, 1); (1, 2.1); (2, 2.9)}.

Our model: yw(x) = ax+ b with w = (a, b); the MLE loss is

L(w) =
∑
i

(
yw(xi)− zi

)2
How do we find the minimum of L? It is there where ∂L/∂wi = 0.

∂Li(w)

∂w1 ≡ a
= 2xi(b+ axi − zi) = 0

∂Li(w)

∂w2 ≡ b
= 2(b+ axi − zi) = 0

We can solve that!

4 / 20



Numerical solution: a = 0.95, b = 1.05.
5 / 20



What if. . .

y(a,b,c)(x) = a exp(−b(x− c)2) + d

�4 �2 2 4

0.2

0.4

0.6

0.8

1.0
a=b=c=1

a=0.5
b=0.2
c=1

We can’t find a closed-form solution for that!

6 / 20



2e−bc2
(
ae−bc2 − 1

)
+ 2e−b(1−c)2

(
ae−b(1−c)2 − 2.1

)
+

2e−b(2−c)2
(
ae−b(2−c)2 − 2.9

)
= 0

−2ac2e−bc2
(
ae−bc2 − 1

)
− 2a(1− c)2e−b(1−c)2

(
ae−b(1−c)2 − 2.1

)
−

2a(2− c)2e−b(2−c)2
(
ae−b(2−c)2 − 2.9

)
= 0

−4abce−bc2
(
ae−bc2 − 1

)
+ 4ab(1− c)e−b(1−c)2

(
ae−b(1−c)2 − 2.1

)
+

4ab(2− c)e−b(2−c)2
(
ae−b(2−c)2 − 2.9

)
= 0

7 / 20



c = −1

8 / 20



But

We can compute ∂L(w)/∂wi

9 / 20



the value of L
we are interested in finding arg minw L

10 / 20



using local information L(w)

we are interested in finding arg minw L

11 / 20



using local information L(w) as well as ∂L(w)/∂w

we are interested in finding arg minw L

12 / 20



using the gradient g of L

The direction u in which to
optimise is given by the gradient:
u = −g

Searching the minimum by repeated evaluation of L and g ≡ ∇L.
−g gives us a direction u in which we want to optimise.
We change the parameter vector as follows:

ui = −gi (1)

wi+1 = wi + αui (2)

we call u the search direction
we call α the learning parameter or step size
we call this method steepest descent or gradient descent
it belongs to the class of greedy algorithms

13 / 20



the value of α

a too small value for α has two drawbacks:

I we find the minimum more slowly

I we end up in local minima or saddle/flat points

14 / 20



the value of α

a too large value for α has one drawback:

I you may never find a minimum; oscillations usually occur

we only need 2 steps to overshoot!

15 / 20



putting a trace on u

c

b a

a: u = −g; small α;
b: u = −g; large α;
c:

u0 = −g0 (3)

ui = −gi + βui−1 (4)

= −gi − βgi−1 − β2gi−2 − β3gi−3 . . . (5)

wi+1 = wi + αui (6)

we call α the learning rate
we call β the momentum
we usually take β � α

16 / 20



trick: momentum

How do we choose α and β? if, for the sake of the argument, assume
that g ≡ ∇E does not change:

∆w = −α g (1 + β + β2 + . . .)

= − α

1− β
g

Assuming a perfect ∇E, the best values for α and β are when

α

1− β
= 1 ⇒ α+ β = 1

Typically we choose α small and β large (of course, α, β > 0).

17 / 20



bird’s eye view

-4 -2 2 4

5

10

15

= -4 -2 0 2 4

-4

-2

0

2

4

L(x) = L(0) + x
∂L
∂w︸︷︷︸
g

+x2
∂2L
∂w2︸︷︷︸

HessianH

18 / 20



optimising

following the gradient is not always the best choice

�4 �2 0 2 4
�4

�2

0

2

4

Close to minima, it appears that Loss functions are close to quadratic

19 / 20



condition of the Hessian
Condition = largest EV / smallest EV

Condition 5 Condition 100

-4 -2 0 2 4

-4

-2

0

2

4

-4 -2 0 2 4

-4

-2

0

2

4

What does H look like?

A large condition number means that some directions of H are very steep
compared to others. In neural networks, a condition of 1010 is not
uncommon.

A class of optimisers (CG, Adam, rprop, adadelta, . . . ) deal with such H.
20 / 20


