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some good and some bad news

universal approximation

an MLP with at least two layers of weights can approximate arbitrarily
well any given mapping from one finite input space with a finite number
of discontinuities to another, if we have enough hidden units [Cybenko
1989; Funahashi 1989; Hornik et al 1989, 1991; Hartman et al 1990].

parameter finding

finding the optimum set of weights w for an MLP is an NP-complete
problem, i.e. it cannot be solved exactly within a time t ∝ |w|x [Blum
et al., 1992].
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how did deep learning evolve?

In the 1990’s, FFNN’s have been used in many areas, including process
control, classification, stock exchange prediction, diagnosis, robot
control, sensory data fusion, etc. But they did not live up to their
expectation, and after their hype (1986–1995) they lost in popularity.

In fact, their restricted representation and generalisation properties was
one of the biggest problems.

→ IEEE journals, ICML had policies not to accept NN papers

Recent results with deep neural networks have shown that the
don’t-give-up approach can give great results. Neural networks now can
be used to solve real-world problems (google speech recognition, Street
View house number recognition, image recognition, . . . )

3 / 31



a big problem: the vanishing gradient

It is usually true that

∂E(w)/∂w
(H)
ij � ∂E(w)/∂w

(H−1)
ij

i.e., the lower you get in the network, the more the gradient vanishes.

After all,

∂E(w)

∂wH−1,i,j
= δH−1,jxi =

∑
l

δH,l︸︷︷︸
small

(
l︸︷︷︸
×

wHlkxi︸ ︷︷ ︸
small

= smaller
(
l︸ ︷︷ ︸

= smaller!
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E(XOR), 1 hidden layer
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E(XOR), 3 hidden layers

−5

0

5

−5

0

5

0

0.05

0.1

0.15

0.2

−5

0

5
−5

0

5

0

1

2

3

4

5

E(w1)

7 / 31



E(XOR), 10 hidden layers
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way out

Back-propagation is difficult for multiple hidden layers due to the
vanishing gradient.

Unsupervised pretraining with Restricted Boltzmann Machines (Hinton et
al., 2006) solved that.

However, it was later found that DNN can also be successfully trained:

I use many labelled data (e.g., now well possible for images);

I train “longer” (possible with GPUs);

I better weight initialisation (new methods were developed);

I regularise with “dropout”.

Sometimes the use of rectified linear units max(0, x) or log(1 + ex)
improve things, too.
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why do multiple hidden layers improve generalisation?

Functions compactly represented with k
layers may require exponential size with
k − 1 layers.

Multiple levels of latent variables allow
combinatorial sharing of statistical strength.

Different high-level features share
lower-level features.

from: Understanding and Improving Deep Learning Algorithms, Yoshua Bengio, ML
Google Distinguished Lecture, 2010
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rectifier linear units
Here is a trick to make logistic neurons more powerful, but keeping the
number of parameters constant:

1. make many copies of each neuron

2. all neurons have the same parameters, but have a fixed offset to the
bias: −1, −0.5, 0.5, . . .

=∑∞
n=1 logistic(x+ 0.5− n) ≈ log(1 + ex)

Apart from saving parameters, this also reduces the vanishing gradient.

(but there is no guarantee that this improves things)
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dropout

Let’s look at a neural network with one hidden layer.

Each time a learning sample is learned, we randomly put to 0 each hidden
unit with probability 0.5.

We are therefore randomly sampling from 2H different architectures, but
these share the same weights.
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dropout: how is the output computed?

To compute the output, one could average all possible models.

That is too expensive, however.

Instead we take the half of the outgoing weights to get the same results.
This computes the geometric mean of the predictions of all 2H models.

Quote

if your deep neural network is overfitting, use dropout.
If it isn’t, it will probably be too small!.
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algorithm for backprop (“on-line” aka “stochastic” learning)

back-propagation algorithm:

i n i t i a l i s e t he w e i g h t s
r e p e a t

f o r each t r a i n i n g sample (x, z) do
b e g i n

o =M(w,x) ; f o r w a r d p a s s
c a l c u l a t e e r r o r z − o at t he output u n i t s

f o r a l l w(2) compute δw(2) ; backward p a s s

f o r a l l w(1) compute δw(1) ; backward p a s s c o n t i n u e d
update t he w e i g h t s u s i n g ∂E/∂wij = δjφ

′(·)xi
end
( t h i s i s c a l l e d one epoch )

u n t i l s t o p p i n g c r i t e r i o n s a t i s f i e d

What is wrong with this learning method?
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better algorithm for backprop (“(mini) batch learning”)

back-propagation algorithm:

i n i t i a l i s e t he w e i g h t s
r e p e a t

randomly s e l e c t s am p le s (x, z) from a mini−batch do
b e g i n

o =M(w,x) ; f o r w a r d p a s s
c a l c u l a t e e r r o r z − o at t he output u n i t s

f o r a l l w(2) compute δw(2) ; backward p a s s

f o r a l l w(1) compute δw(1) ; backward p a s s c o n t i n u e d
sum the d e l t a w e i g h t s u s i n g ∂E/∂wij = δjφ

′(·)xi
end
update t he w e i g h t s u s i n g summed d e l t a w e i g h t s

u n t i l s t o p p i n g c r i t e r i o n s a t i s f i e d

What is wrong with this learning method?
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initialising the weights

If two hidden units have exactly the same bias and exactly the same
incoming and outgoing weights, they will always get exactly the same
gradient.

I So they can never learn to be different features.

I We break symmetry by initialising the weights to have small random
values.

If a hidden unit has a big fan-in, small changes on many of its incoming
weights can cause the learning to overshoot.

I We generally want smaller incoming weights when the fan-in is big,
so initialise the weights to be proportional to

√
(fan-in).

We can also scale the learning rate the same way.
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shifting the inputs

When using steepest descent, shifting
the input values makes a big difference.

I It usually helps to transform each
component of the input vector so
that it has zero mean over the
whole training set.

The tanh() produces hidden activations
that are roughly zero mean.

I In this respect it is better than the
sigmoid.
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scaling the inputs

When using steepest descent, scaling the
input values makes a big difference.

I It usually helps to transform each
component of the input vector so
that it has unit variance over the
whole training set.
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A more thorough method: Decorrelate the input
components

For a linear neuron, we get a big win by decorrelating each component of
the input from the other input components.

There are several different ways to decorrelate inputs. A reasonable
method is to use Principal Components Analysis (PCA).

I Drop the principal components with the smallest eigenvalues.

I Divide the remaining principal components by the square roots of
their eigenvalues. For a linear neuron, this converts an axis aligned
elliptical error surface into a circular one.

For a circular error surface, the gradient points straight towards the
minimum.
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speed-up tricks

If we start with a very large learning rate, weights get very large and one
suffers from “saturation” in the neurons. This leads to a vanishing
gradient, and learning is stuck.

Furthermore,

1. use momentum (this will be explained in the “optimisation” lecture);

2. use separate learning rates per parameter;

3. rmsprop;

4. use a second-order method (also here, see the“optimisation”lecture).
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separate adaptive learning rates

In a multilayer net, the appropriate learning rates can vary widely
between weights:

I The magnitudes of the gradients are often very different for different
layers, especially if the initial weights are small.

I The fan-in of a unit determines the size of the “overshoot” effects
caused by simultaneously changing many of the incoming weights of
a unit to correct the same error.

So use a global learning rate (set by hand) multiplied by an appropriate
local gain that is determined empirically for each weight.
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how to determine the individual learning rates

start with a local gain of 1 for every
weight.
Increase the local gain if the gradient for
that weight does not change sign.
Use small additive increases and
multiplicative decreases (for mini-batch)

I this ensures that big gains decay
rapidly when oscillations start.

I If the gradient is totally random the
gain will hover around 1 when we
increase by plus δ half the time and
decrease by times 1− δ half the
time

∆wij = −αgij
∂E

∂wij

if
(

∂E
∂wij

(t) ∂E
∂wij

(t− 1)
)
> 0

then gij(t) = gij(t− 1) + 0.05

else gij(t) = gij(t− 1) · 0.95
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rprop: using only the sign of the gradient

The size of the gradient can be very different for different weights and
can change during learning. Also remember the condition of the Hessian.

I This makes it hard to choose a single global learning rate.

Idea: use only the sign of the gradient.

I The weight updates are all of the same magnitude.

I This escapes from plateaus with tiny gradients quickly.

rprop: This combines the idea of only using the sign of the gradient with
the idea of adapting the step size separately for each weight.

I Increase the step size for a weight multiplicatively (e.g. times 1.2) if
the signs of its last two gradients agree.

I Otherwise decrease the step size multiplicatively (e.g. times 0.5).

I Don’t make the step size too large or too small.
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rmsprop: a mini-batch version of rprop

rprop is equivalent to using the gradient but also dividing by the size of
the gradient.

The problem with mini-batch rprop is that we divide by a different
number for each mini-batch. So why not force the number we divide by
to be very similar for adjacent mini-batches?

rmsprop: Keep a moving average of the squared gradient for each weight

meanSquare(w, t) = 0.9 meanSquare(w, t− 1) + 0.1

(
∂E

∂w
(t)

)2

Dividing the gradient by
√

meanSquare(w, t) makes the learning work
much better.
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summary of learning methods
For small datasets (e.g., 10,000 cases) or bigger datasets without much
redundancy, use a full-batch method.

I conjugate gradient (with Powell restarts), LBFGS, . . .

I adaptive learning rates, rprop, . . .

For big, redundant datasets use mini-batches.

1. Try Adam, Adadelta;

2. Try rmsprop (with momentum?);

3. Try gradient descent with momentum.

Why there is no simple recipe:

I Neural networks differ a lot: Very deep networks (especially ones
with narrow bottlenecks); Recurrent networks; Wide shallow
networks.

I Tasks differ a lot: Some require very accurate weights, some don’t;
Some have many very rare cases (e.g., words).
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early stopping

Early stopping is the standard regularisation technique for MLPs.

Real-world example

validation data

Note: Typically, use about 10% to 30% of the data for cross-validation.
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early stopping recipe

Note: You also need to reserve data for testing! So the recipe is like this:

early stopping:

s p l i t t he data D i n DL , DX , DT

r e p e a t
t r a i n the network one epoch on DL

c r o s s−v a l i d a t i n g : t e s t network on DX

u n t i l DX− l o s s d i d not d e c r e a s e anymore f o r l o n g
s e l e c t the w e i g h t s w i t h th e l o w e s t DX

t e s t i n g : r e p o r t t he e r r o r on DT

Typically we use 60% for DL / 30% for DX / 10% for DT .
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hyperparameter optimisation

getting the last out of your NN, you need to optimise:

I number of hidden layers (1, 2, 3, . . . )

I number of hidden units (50, 100, 200, . . . )

I type of activation function (sigmoid, tanh, rectifier, . . . )

I learning method (adam, adadelta, rprop, . . . )

I learning parameters

I data set split

I data preprocessing

I . . .

We often start finding these by “playing around” with some reasonable
estimates. In the end, one often uses hyperparameter optimisation to find
a good set. Random search or Bayesian Optimisation are both viable
candidates.
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FFNN for classification

Take a set of classification data C0 = {(x, z = 0)} and C1 = {(x, z = 1)}

If we take an FFNN with sigmoidal outputs

y = φ(a) =
1

1 + exp(−a)

we can interpret the output y(x,w) as the conditional probability
p(C0 | x) while p(C1 | x) = 1− y(x,w).

But then the likelihood is a Bernoulli distribution

p(t | x,w) = y(x,w)z
[
1− y(x,w)

]1−z
The negative log likelihood then leads to

E(w) = −
n∑

p=1

{
zp log y(xp,w) + (1− zp) log

[
1− y(xp,w)

]}
Has been shown to lead to better results!
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use one-hot encoding

When classifying data, use one output per class: one-hot encoding.

Imagine the other case. If one encodes class 1 as z = 0 and class 2 by
z = 1, then the continuous output is difficult to interpret. What does
z = 0.5 mean?

This gets even worse with 3, . . . classes.

We prefer to use a one-hot encoding! Following the previous slide, each
output encodes the likelihood of x belonging to that class.
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