neural networks: introduction

Patrick van der Smagt

A noisy real-valued function

1 -
z
0 I
~1t
0 . 1
inputs: X = (z1,...,2x)"
targets: z = (21,...,2x)", 2 = h(x;) + € = sin(27mz;) + €

These figures are from C. Bishop: Pattern Recognition and Machine Learning

Model: Oth order polynomial

y(z, w) = wo

Model: 1st order polynomial

y(z, w) = wy + wix

Model: 3rd order polynomial

y(z, w) = wo + w1z + wor® + wax®

6/17

Model: 9th order polynomial

S
I}

y(z,w) = ijxj

Jj=0

Problem Definition

We have input vectors & and associated output values z. We want to
describe the underlying functional relation.

What about the following simple model?

M—-1
y(@,w) =wo+ Y wip;(x) = w' ¢() (3)
j=1
where
¢ basis function — many choices, can be nonlinear
wo bias — equivalent to defining ¢g = 1

It is linear in w! Nothing new if you know Taylor expansion, Fourier
transform, wavelets. . .

Typical Basis Functions

polynomials

Gaussians “sigmoids”
(=S-shaped curves)

towards nonlinear systems

How do we find optimal basis functions?

The above system could be graphically represented like this
(this is not a graphical model)

where the arrows represent weights and the circles the basis functions.

Why don’t we let the system find the optimal basis functions?

11/17

the multi-layered perceptron = neural network

We can extend the system with an additional layer, and get

(for simplicity, the constant “1” is usually and from now on not depicted. But you always need it!)

We have generalised to y(x, wo, w;) = w] p(w =)

the deep neural network

We can continue adding more hidden layers

and get a deep neural network: y(z, w) = wl ¢(w{p(wl x)).

13/17

how do we find W?

Remember that our data set consists of targets z = (21,22, ...,25) and
corresponding input vectors X = (&1, ®a,...,ZN).

We measure random variable z as

z=y(z,w)+e€ [e: Gaussian, zero mean| (4)
Then the log likelihood is

Inp(z | X,w) x —% Z(Zn - y(:vmw))2 (5)

We call the negative log likelihood the loss L(w) aka E(w).

14 /17

how do we find W?

In the maximum-likelihood solution we therefore minimise
2
E = Z Y(xn, w))

There is one difference w.r.t. linear regression: E(w) is no longer convex!

How can this be minimised? The minimum is located where its gradient
is 0. So one typically minimises by using the gradient:

Wiyl = W; — aVFE

How do we compute the gradient VE? Back propagation does this.

15 /17

one slide on back-propagation

A general rule to optimally find the weights w was not discovered until
1974 (Paul Werbos) or 1985 (LeCun) and 1986 (Rumelhart et al.):
back propagation.

The idea: you need to compute the gradient 9E/0w;;i. To do so,
compute the residual y — z at the output, and propagate that back the
the neurons in the layers below. From that you can then compute the
gradient.

16 /17

algorithm for backprop (“on-line” aka “stochastic” learning)

back-propagation algorithm:

initialise the weights
repeat
for each training sample (x,2z) do
begin
compute o=y(w,z) (forward pass)
calculate residual d0p; =2—o0 at the output units
for all k:
propagate dy; back one layer by dp_1:=3;0kjwk—1,;
update the weights using O0E/Owgi; = 0k; &'(-) x;
end
(this is called one epoch)
until stopping criterion satisfied

17 /17

	Linear Basis Function Models
	Properties

