neural networks: introduction

Patrick van der Smagt

A noisy real-valued function

$$
\begin{align*}
& \text { inputs: } \boldsymbol{X}=\left(x_{1}, \ldots, x_{N}\right)^{\top} \tag{1}\\
& \text { targets: } \boldsymbol{z}=\left(z_{1}, \ldots, z_{N}\right)^{\top}, \quad z_{i}=h\left(x_{i}\right)+\epsilon=\sin \left(2 \pi x_{i}\right)+\epsilon \tag{2}
\end{align*}
$$

These figures are from C. Bishop: Pattern Recognition and Machine Learning

Model: 0th order polynomial

$$
y(x, \boldsymbol{w})=w_{0}
$$

Model: 1st order polynomial

$$
y(x, \boldsymbol{w})=w_{0}+w_{1} x
$$

Model: 3rd order polynomial

Model: 9th order polynomial

Problem Definition

We have input vectors x and associated output values z. We want to describe the underlying functional relation.

What about the following simple model?

$$
\begin{equation*}
y(\boldsymbol{x}, \boldsymbol{w})=w_{0}+\sum_{j=1}^{M-1} w_{j} \phi_{j}(\boldsymbol{x})=\boldsymbol{w}^{\top} \phi(\boldsymbol{x}) \tag{3}
\end{equation*}
$$

where
ϕ basis function - many choices, can be nonlinear
w_{0} bias $\quad-\quad$ equivalent to defining $\phi_{0} \equiv 1$
It is linear in \boldsymbol{w} ! Nothing new if you know Taylor expansion, Fourier transform, wavelets...

Typical Basis Functions

polynomials

Gaussians

"sigmoids"
(=S-shaped curves)

towards nonlinear systems

How do we find optimal basis functions?
The above system could be graphically represented like this (this is not a graphical model)

where the arrows represent weights and the circles the basis functions.
Why don't we let the system find the optimal basis functions?

the multi-layered perceptron $=$ neural network

We can extend the system with an additional layer, and get

(for simplicity, the constant " 1 " is usually and from now on not depicted. But you always need it!)
We have generalised to $y\left(\boldsymbol{x}, \boldsymbol{w}_{0}, \boldsymbol{w}_{1}\right)=\boldsymbol{w}_{1}^{\top} \boldsymbol{\phi}\left(\boldsymbol{w}_{0}^{T} \boldsymbol{x}\right)$

the deep neural network

We can continue adding more hidden layers

and get a deep neural network: $y(\boldsymbol{x}, \boldsymbol{w})=\boldsymbol{w}_{2}^{\top} \boldsymbol{\phi}\left(\boldsymbol{w}_{1}^{\top} \boldsymbol{\phi}\left(\boldsymbol{w}_{0}^{T} \boldsymbol{x}\right)\right)$.

how do we find W ?

Remember that our data set consists of targets $\boldsymbol{z}=\left(z_{1}, z_{2}, \ldots, z_{N}\right)$ and corresponding input vectors $\boldsymbol{X}=\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{N}\right)$.

We measure random variable z as

$$
\begin{equation*}
z=y(\boldsymbol{x}, \boldsymbol{w})+\boldsymbol{\epsilon} \quad[\epsilon: \text { Gaussian, zero mean }] \tag{4}
\end{equation*}
$$

Then the log likelihood is

$$
\begin{equation*}
\ln p(\boldsymbol{z} \mid \boldsymbol{X}, \boldsymbol{w}) \propto-\frac{1}{2} \sum_{n=1}^{N}\left(z_{n}-y\left(\boldsymbol{x}_{n}, \boldsymbol{w}\right)\right)^{2} \tag{5}
\end{equation*}
$$

We call the negative log likelihood the loss $\mathcal{L}(\boldsymbol{w})$ aka $E(\boldsymbol{w})$.

how do we find W ?

In the maximum-likelihood solution we therefore minimise

$$
E=\sum_{n=1}^{N}\left(z_{n}-y\left(\boldsymbol{x}_{n}, \boldsymbol{w}\right)\right)^{2}
$$

There is one difference w.r.t. linear regression: $E(\boldsymbol{w})$ is no longer convex!
How can this be minimised? The minimum is located where its gradient is 0 . So one typically minimises by using the gradient:

$$
\boldsymbol{w}_{i+1}=\boldsymbol{w}_{i}-\alpha \nabla E
$$

How do we compute the gradient ∇E ? Back propagation does this.

one slide on back-propagation

A general rule to optimally find the weights \boldsymbol{w} was not discovered until 1974 (Paul Werbos) or 1985 (LeCun) and 1986 (Rumelhart et al.): back propagation.

The idea: you need to compute the gradient $\partial E / \partial w_{i j k}$. To do so, compute the residual $y-z$ at the output, and propagate that back the the neurons in the layers below. From that you can then compute the gradient.

algorithm for backprop ("on-line" aka "stochastic" learning)

back-propagation algorithm:
initialise the weights

repeat

for each training sample $(\boldsymbol{x}, \boldsymbol{z})$ do
begin
compute $\boldsymbol{o}=y(\boldsymbol{w}, \boldsymbol{x}) \quad$ (forward pass)
calculate residual $\delta_{k j}=\boldsymbol{z}-\boldsymbol{o}$ at the output units for all k :
propagate $\delta_{k j}$ back one layer by $\delta_{k-1, i}=\sum_{j} \delta_{k j} w_{k-1, i, j}$ update the weights using $\partial E / \partial w_{k i j}=\delta_{k j} \phi^{\prime}(\cdot) x_{i}$
end
(this is called one epoch)
until stopping criterion satisfied

