
neural networks: introduction

Patrick van der Smagt

1 / 17

A noisy real-valued function

x

z

0 1

−1

0

1

inputs: X = (x1, . . . , xN)T (1)

targets: z = (z1, . . . , zN)T, zi = h(xi) + ε = sin(2πxi) + ε (2)

These figures are from C. Bishop: Pattern Recognition and Machine Learning
2 / 17

Model: 0th order polynomial

x

z

M = 0

0 1

−1

0

1

y(x,w) = w0

4 / 17

Model: 1st order polynomial

x

z

M = 1

0 1

−1

0

1

y(x,w) = w0 + w1x

5 / 17

Model: 3rd order polynomial

x

z

M = 3

0 1

−1

0

1

y(x,w) = w0 + w1x+ w2x
2 + w3x

3

6 / 17

Model: 9th order polynomial

x

z

M = 9

0 1

−1

0

1

y(x,w) =

M∑
j=0

wjx
j

7 / 17

Problem Definition

We have input vectors x and associated output values z. We want to
describe the underlying functional relation.

What about the following simple model?

y(x,w) = w0 +

M−1∑
j=1

wjφj(x) = w
Tφ(x) (3)

where

φ basis function — many choices, can be nonlinear
w0 bias — equivalent to defining φ0 ≡ 1

It is linear in w! Nothing new if you know Taylor expansion, Fourier
transform, wavelets. . .

8 / 17

Typical Basis Functions

polynomials Gaussians “sigmoids”
(=S-shaped curves)

9 / 17

towards nonlinear systems

How do we find optimal basis functions?

The above system could be graphically represented like this
(this is not a graphical model)

x x x x x

y

w4w0

where the arrows represent weights and the circles the basis functions.

Why don’t we let the system find the optimal basis functions?

11 / 17

the multi-layered perceptron = neural network

We can extend the system with an additional layer, and get

x

y

w000

1

w014

w100 w140

(for simplicity, the constant “1” is usually and from now on not depicted. But you always need it!)

We have generalised to y(x,w0,w1) = w
T
1φ(w

T
0 x)

12 / 17

the deep neural network

We can continue adding more hidden layers

x

w014

y

w200 w240

w010

and get a deep neural network: y(x,w) = wT
2φ
(
wT

1φ(w
T
0 x)

)
.

13 / 17

how do we find W?

Remember that our data set consists of targets z = (z1, z2, . . . , zN) and
corresponding input vectors X = (x1,x2, . . . ,xN).

We measure random variable z as

z = y(x,w) + ε [ε: Gaussian, zero mean] (4)

Then the log likelihood is

ln p(z |X,w) ∝ −1

2

N∑
n=1

(
zn − y(xn,w)

)2
(5)

We call the negative log likelihood the loss L(w) aka E(w).

14 / 17

how do we find W?

In the maximum-likelihood solution we therefore minimise

E =

N∑
n=1

(
zn − y(xn,w)

)2
There is one difference w.r.t. linear regression: E(w) is no longer convex!

How can this be minimised? The minimum is located where its gradient
is 0. So one typically minimises by using the gradient:

wi+1 = wi − α∇E

How do we compute the gradient ∇E? Back propagation does this.

15 / 17

one slide on back-propagation

A general rule to optimally find the weights w was not discovered until
1974 (Paul Werbos) or 1985 (LeCun) and 1986 (Rumelhart et al.):
back propagation.

The idea: you need to compute the gradient ∂E/∂wijk. To do so,
compute the residual y − z at the output, and propagate that back the
the neurons in the layers below. From that you can then compute the
gradient.

16 / 17

algorithm for backprop (“on-line” aka “stochastic” learning)

back-propagation algorithm:

i n i t i a l i s e t he w e i g h t s
repeat

fo r each t r a i n i n g sample (x, z) do
begin

compute o = y(w,x) (f o r w a r d p a s s)
c a l c u l a t e r e s i d u a l δkj = z − o at t he output u n i t s
f o r a l l k :

p r o p a g a t e δkj back one l a y e r by δk−1,i =
∑

j δkjwk−1,i,j

update t he w e i g h t s u s i n g ∂E/∂wkij = δkj φ
′(·)xi

end
(t h i s i s c a l l e d one epoch)

un t i l s t o p p i n g c r i t e r i o n s a t i s f i e d

17 / 17

	Linear Basis Function Models
	Properties

