
Introduction to Linear Classification
by Grady Jensen

Reading Material:
”Pattern Recognition and Machine Learning” by Bishop [ch. 4, 4.1.1, 4.1.2, 4.1.7, 4.2,
4.3.2, 4.3.4]

Further extra reading:
”Machine Learning: A Probabilistic Perspective” by Murphy

Note: these slides are adapted from slides originally by Justin Bayer
Most figures are from C. Bishop: ”Pattern Recognition and Machine Learning”
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Notation

Symbol Meaning

s a scalar number is lowercase and not bold
S A vector is uppercase
S a matrix is uppercase and bold

y(X ) distance from decision surface
y predicted class label
z actual class label

I(a = b) Indicator function; I(a) = 1 if a else 0
zn The actual class label of the n’th example
X † The Moore-Penrose Pseudoinverse of X

There is not a special symbol for vectors or matrices augmented by the bias term,
w0. Assume it is always included as was done with linear regression.
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What is the difference between
classification and regression?

Regression:

Calculating an output that consists of one or more continuous variables.

For example, prediction of the yield in a chemical manufacturing process in which

inputs consist of the concentrations of reactants, the temperature, and the pressure.

Classification:

Calculating an output that consists of one or more classes or groups.

For example, separating flowers into types given the length and width of the sepals

and the pedals.
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Classification Problems
In classification problems we are given a set of training data

D = {(X n , zn),n = 1 . . . ,N },

where z ∈ {0, 1, . . .K − 1}.
Goal: Assign unknown input vector X to one of K classes.

Example: electromyography (EMG) data recorded at the skin surface.
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Basic Classification: Zero-one loss

We are interested in the amount of samples we get right:

N∑
i=1

I(yi = zi).

Ideally, we are interested in the amount of future samples we get right.

How should this be done?
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Hyperplanes as a Decision Boundary

How to decide whether a point x ∈ Rn belongs to class 0 or 1? → Check
on which side of a hyperplane the point is.

Let a plane be defined by its normal vector W and
an offset b.

W TX + b

 = 0 if X on the plane
> 0 if X on normal’s side of plane
< 0 else

Hyperplanes are computationally very convenient: easy to evaluate.

A data set D = {(Xn , zn)} is linearly separable if there exists a
hyperplane for which all Xn with zn = 0 are on one and all Xn with
zn = 1 on the other side.
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The Perceptron

A historical algorithm for binary classification.

Decision rule

y = f (W TX + b)

where f is the step function defined as:

f (ξ) =

{
1 if ξ > 0,
0 else.
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Learning Rule for the Perceptron

Initialise parameters to any value, e.g., a zero vector: W ← 0.

While there is at least one misclassified Xi in the training set:

W ←
{

W +Xi if zi = 1,
W −Xi if zi = 0.

What is the learning rule for the bias?

B ←
{

B + 1 if zi = 1,
B − 1 if zi = 0.

This method converges to a W discriminating between two classes if it
exists.
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Does the simple binary approach scale up to
multiple classes?

One-Versus-The-Rest Classifier

Separate points in one class from all other
classes.

R1

R2

R3

?

C1

not C1

C2

not C2
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One-Versus-One Classifier

Have a discriminant function for each pair
of classes and use majority vote to classify.

R1

R2

R3

?C1

C2

C1

C3

C2

C3
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K-Class Discriminant

K linear functions of the form

yk = W T
k X + wk0

where

X ∈ Ck if yk (X ) > yj (X ) ∀ j 6= k

Ri

Rj

Rk

xA

xB

x̂
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Non-Linearly Separable

Sometimes, data is not → try to find basis
functions φ(X ) in which the data is linearly
separable (as in linear regression classes.)

This can be done manually. Or it can be
learned, which will be taught to you in later
classes.
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Non-Linearly Separable

φ(X ) :

(
x1
x2

)
→
(
r
θ

)
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Non-Linearly Separable

φ(X ) :

(
x1
x2

)
→

 x2
1

x2
2√

2x1x2
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Least Squares for Classification

yk (X ) = W T
k X + wk0

Y (X ) = WTX

ED (W) =
1

2
Tr
{
(XW − Z)T (XW − Z)

}
(1)

W = (XTX)−1XTZ = X†Z (2)

Y (X ) = WTX = ZT (X†)TX (3)

This should all look familiar, but with more matrices instead of vectors.
(If not, review the lecture on basic linear regression.)
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When the target vectors, zn , in the training set, D, all satisfy linear
constraints, then

ATZn + b = 0⇔ ATy(X ) + b = 0

If we use 1-of-K coding, the elements of y(X ) will sum to 1.

Careful: This does not mean that we can interpret them as probabilities. The value is
still not contrained to (0,1).

Problems with
outliers: penalize
predictions that are
too correct

The reason why
should be intuitive... −4 −2 0 2 4 6 8

−8
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0

2

4
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A Dimensionality Reduction View

Simplest approach: Choose the
dimension that connects class means

and project onto it.

Smarter approach: Instead, choose a
dimension in which classes have

maximum separation.
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Fisher Criterion

Ratio of between-class variance to the within-class variance.

J (W ) =
(m2 −m1)

2

s21 + s22
(4)

where

m1 = 1
N1

∑
n∈C1

Xn ,

m2 = 1
N2

∑
n∈C2

Xn ,

mk = W TMk ,
s2k =

∑
n∈Ck

(yn −mk )
2,

yn = W TXn

Which we can rewrite as

J (W ) =
W TSBW

W TSWW
(5)

where

Between class SB = (M2 −M1)⊗ (M2 −M1)
T

Within class SW =
∑

n∈C1
(Xn −M1)⊗ (Xn −M1)

T+∑
n∈C2

(Xn −M2)⊗ (Xn −M2)
T
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Approaches to Classification
⇐
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Linear Discriminant Functions:

These approaches map each input directly onto a class label and
probabilities play no role. If we increase the complexity of our

algorthms we have two more choices.

Discriminative Models:

These models solve the posterior class probabilities, p(Ck | x ),
directly, and then assign each new x to a class using a suitable loss

function or other decision function.

Generative Models:

Like discriminative models, these also solve for p(Ck | x ), but first
have to determine p(x | Ck ) and p(Ck ) for each class individually.

Afterwards, a decision function determines class membership.
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Generative vs Discriminative

20 / 20



Linear Discriminative Models
by Grady Jensen

Reading Material:
”Pattern Recognition and Machine Learning” by Bishop [ch. 4, 4.1.1, 4.1.2, 4.1.7, 4.2,
4.3.2, 4.3.4]

Further extra reading:
”Machine Learning: A Probabilistic Perspective” by Murphy

Note: these slides are adapted from slides originally by Justin Bayer
Most figures are from C. Bishop: ”Pattern Recognition and Machine Learning”
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In the previous lecture we talked about discriminative functions where the
function directly mapped each input into a class.

Now we will increase the complexity of our classification model and try to
determine the posterior class probabilities for our problem.

In discriminative models, we model the conditional of the output given
the input, but not the input. That is, we model p(z | X ), but not p(X ).
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Notation

Symbol Meaning

s a scalar number is lowercase and not bold
S A vector is uppercase
S a matrix is uppercase and bold

y(X ) distance from decision surface
y predicted class label
z actual class label

I(a = b) Indicator function; I(a) = 1 if a else 0
zn The actual class label of the n’th example
Ck equivalent to z = class k
D the training data D = {(Xn , zn),n = 1 . . . ,N }
φ(x ) a basis function

There is not a special symbol for vectors or matrices augmented by the bias term,
w0. Assume it is always included as was done with linear regression.
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Logistic Regression

Logistic regression is a discriminative model for classification: the output
of our model is the parameter of a Bernoulli variable.

Let us start with binary classification.

p(C1 | X ) = σ(b + XTW ),

p(C0 | X ) = 1− σ(b + XTW ),

where σ is the sigmoid or logistic function that “squashes” the real
numbers to the interval of (0, 1).
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The logistic (sigmoid) function

σ(a) =
1

1 + e−a
(1)

σ
′
(a) = σ(a)(1− σ(a)) (2)

”...natural representation for
the posterior probability in a
binary classification
problem.” 1

1”Why the logistic function? A tutorial discussion on probabilities and neural
networks” by Michael Jordan
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Maximum Likelihood for Logistic Regression

Learning logistic regression comes down to finding a “good” set of
parameters {W , b}.

A standard approach is to write down the likelihood and try to optimise it
with respect to those parameters.

Assuming that all the (Xi , zi) are drawn independently, we can do so as
follows.

p(Z |W,X) =

N∏
n=1

p(zn | Xn ,Wn)

=

N∏
n=1

p(z = 1 | Xn ,Wn)zn
(
1− p(z = 1 | Xn ,Wn)

)1−zn
.
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Let’s inspect the two factors of each sample more closely.

p(z = 1 | Xn , b,W )zn︸ ︷︷ ︸
=1 if zn=0

(
1− p(z = 1 | Xn , b,W )

)1−zn︸ ︷︷ ︸
=1 if zn=1

I Only one of the first two factors is “important” to the result, since
the other one is the neutral element of multiplication.
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Log-likelihood
Optimising over a product is difficult, since the terms interact. If we take
the logarithm, the positions of the optima do not change, only their
values. But since products change into sums, optimisation is much easier:
each of the sum’s terms is independent.

E (W ) = − ln p
(
Z |W ,X

)
= −

N∑
n=1

[zn ln yn + (1− zn) ln(1− yn)]

where

yn = σ(W Tφn)

This loss function is harder to optimise than the one for linear
regression—there is no closed form available.
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Derivatives of the log-likelihood
With a little bit of math manipulation, we see

∇WED(W ) =

N∑
n=1

(
σ(W TΦn)− Zn

)
Φn (3)

Look familiar?

Hint:

ln(1− a

b
) = ln(

b − a

b
)

= ln(b − a)− ln b

and

dσ

da
= σ(1− σ)

where σ is as in eqn (1)
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Soft Zero-One Loss

As we saw in linear regression, outliers ( both correct and incorrect ) can
cause problems.

What if we minimise the following objective with respect to our
parameter W:

Ẽ (W ) =

N∑
n=1

[
σ
(
β(W TΦn)

)
− zn

]2
+ λW TW

I For β →∞ the above becomes the zero-one loss,

I λ is used to control the complexity of the model to prevent
overfitting,

I The objective is no longer convex: that means that we are no longer
guaranteed to find the optimum.
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The red dotted line is
Logistic Regression, while
the solid blue line is soft
loss.

Logistic regression
misclassifies 3 points
while soft loss messes up
on 2.

This image was taken from ”Bayesian Reasoning and Machine Learning” by Barber
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Hinge loss

One more alternative is to mimimise

N∑
n=1

max(0, 1− z̄n(b + W TXn)),

where z̄n = 2zn − 1.

−2 −1 0 1 2
z

E(z)

I Although it is only locally differentiable, it works very good.

I A variant, squared hinge loss is a reasonable alternative.

I Objective is convex.
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Multiclass problems

Most of the time, we do not have a binary classification problem, but one
with dozens or thousands of labels. In that case, make z a vector Z that
is zero everywhere and one (i.e.,“hot”) only at the index of the right class.

Example

Z = (0, 0, 1, 0, 0, 0)T .

We will call these “hot k” or “one of k” vectors.

We then also have multiple W , stacked into the columns of a matrix W.
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Multiclass Logistic Regression

If we have multiple classes, we use multiple logistic regression models and
normalize so the outputs sum up to 1. This is done via the softmax
function. So we define our posterior function as follows:

p(Ci | X ) =
e(W

T
i X )∑

j e
(W T

j X )

Interestingly, you can follow the same maximum likelihood steps we did
earlier to derive the gradient of this function.

Hint: it has a form we’ve seen before :)
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Non-closed form solutions

When we don’t have a closed form solution to the problem, we must use
an optimization algorithm to calculate it.

To do this we need to look at the gradient and the Hessian of the loss
function. Using methods like steepest descent, Newton’s method, BFGS,
or iteratively reweighted least squares one can seek to find a minimum of

the loss function.

The basics of optimization will be covered in a later lecture.

15 / 15



Linear Generative Models
by Grady Jensen

Reading Material:
”Pattern Recognition and Machine Learning” by Bishop [ch. 4, 4.1.1, 4.1.2, 4.1.7, 4.2,
4.3.2, 4.3.4]

Further extra reading:
”Machine Learning: A Probabilistic Perspective” by Murphy

Note: these slides are adapted from slides originally by Justin Bayer
Most figures are from C. Bishop: ”Pattern Recognition and Machine Learning”
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Notation

Symbol Meaning

s a scalar number is lowercase and not bold
S A vector is uppercase
S a matrix is uppercase and bold

y(X ) distance from decision surface
y predicted class label
z actual class label

I(a = b) Indicator function; I(a) = 1 if a else 0
zn The actual class label of the n’th example
Ck equivalent to z = class k
D the training data D = {(Xn , zn),n = 1 . . . ,N }
φ(x ) a basis function

There is not a special symbol for vectors or matrices augmented by the bias term,
w0. Assume it is always included as was done with linear regression.
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In the previous lecture we talked about discriminative models where we
modelled the conditional of the output given the input, but not the input.

That is, we modelled p(z | X ), but not p(X )

Now we will increase the complexity of our classification model once
again and try to determine the posterior class probabilities along with the

likelihoods and the priors for our problem.

Like discriminative models, these also solve for p(Ck | x ), but first have
to determine p(x | Ck ) and p(Ck ) for each class individually. Afterwards,

a decision function determines class membership.

3 / 17



Generative Models

Intuitive idea: For each class, estimate a model. For a new input X,
check to which model it fits best.

Formal idea: Use p(Ck ) and p(X | Ck ) and Bayes to get p(Ck | X ).

What is p(Ck )?
It gives us the probability that an unseen training point belongs to class k .

What is p(X | Ck )?
It gives us the probability of a point given a class.

Finally, p(Ck | X )?

It gives us the probability that a given point belongs to a class.
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Model for the class priors
How do we model

p(Ck )?

Use categorical distribution. For each of the classes 0, . . . , k − 1 there is
one parameter 0 ≤ θi ≤ 1. Furthermore

∑
i θi = 1. So

p(Ci | θ) = θi .

The maximum likelihood estimator for this is the fraction of samples that
fall into the class—plain counting.

This method goes by many names; empirical Bayes and evidence approximation are
more common in machine learning literature.

How can we justify doing this?

Like we discussed in previous lectures, we can also use distributions as
priors, like gaussian or poisson.
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Class conditionals (Continuous)

We have to make assumptions about the class conditional densities. Let’s
choose a multivariate Gaussian:

p(X | Ck ) =
1

(2π)D/2|Σ|1/2 exp

{
−1

2
(X −Mk )

TΣ−1(X −Mk )

}

We can estimate all the parameters {M0, . . . ,Mk−1,Σ} by maximum
likelihood for the MVG on the subsets corresponding to the class of the
data set. For the covariance, we take the full data set.
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Likelihood

Once we have a parametric forms of p(X | Ck ) and p(Ck ) we can use
maximum likelihood to determine the values of the parameters.

Let’s suppose we have a dataset {Xn , zn} and zn = 1 means class C1 and
zn = 0 means class C2. The priors, p(C1) and p(C2) are denoted by π
and 1− π, respectively.

When zn = 1,

p(Xn , C1) = p(C1)p(Xn | C1) = πN (Xn | M1,Σ)

A when zn = 0,

p(Xn , C2) = p(C2)p(Xn | C2) = (1− π)N (Xn | M2,Σ)

thus the likelihood is,

p(Z | π,M1,M2,Σ) =

N∏
n=1

[πN (Xn | M1,Σ)]zn [(1− π)N (Xn | M2,Σ)]1−zn

(1)
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Maximum Likelihood

If we maximize according to π, then

π =
1

N

N∑
n=1

zn =
N1

N
=

N1

N1 +N2
(2)

maximizing according to M1 and M2 gives us

M1 =
1

N1

N∑
n=1

znXn (3)

M2 =
1

N2

N∑
n=1

(1− zn)Xn (4)

8 / 17



and finally according to Σ,

−1

2

N∑
n=1

zn ln |Σ| − 1

2

N∑
n=1

zn(Xn −M1)
TΣ−1(Xn −M1)−

1

2

N∑
n=1

(1− zn) ln |Σ| −
1

2

N∑
n=1

(1− zn)(Xn −M2)
TΣ−1(Xn −M2)

=− N

2
ln |Σ| − N

2
Tr{Σ−1S}

where S =
N1

N
S1 +

N2

N
S2

S1 =
1

N1

∑
n∈C1

(Xn −M1)(Xn −M1)
T

S2 =
1

N2

∑
n∈C2

(Xn −M2)(Xn −M2)
T
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Gaussian Discriminant Analysis (K = 2)

p(C1 | X ) =
p(X | C1) p(C1)

p(X | C1)p(C1) + p(X | C2) p(C2)
.

=
1

1 + e(−a)
= σ(a)

Where we have defined

a = ln
p(X | C1)p(C1)
p(X | C2)p(C2)

Figure : Class
conditional densities

Figure :
p(C1 | X )

x

p(C1|x) p(C2|x)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

Figure : How decision
functions can be
determined
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Form of the Posterior (Continuous)

For the case with K = 2 we have

p(C1 | X ) =
1

1 + exp
(
−(W TX + w0)

)
=σ(W TX + w0)

with

W = Σ−1(µ1 − µ2)

w0 = −1

2
µT
1 Σ−1µ1 +

1

2
µT
2 Σ−1µ2 + ln

p(C2)
p(C1)

It’s the same model as with logistic regression. But the parameters are
estimated differently. Note the priors! Note that we don’t have quadratic
terms in X because of cancellation!

If they have similar forms, how do we pick which one to use?
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Gaussian Discriminant Analysis (K > 2)

p(Ck | X ) =
p(X | Ck ) p(Ck )∑
j p(X | Cj ) p(Cj )

.

Does this look familiar?

What if I write it as

p(Ck | X ) =
e ln p(X |Ck ) p(Ck )∑
j e

ln p(X |Cj ) p(Cj )
=

eak∑
j e

aj
(5)

Where ak = ln p(X | Ck ) p(Ck )
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Form of the Posterior (Continuous)
K > 2
Using equation (5)

ak (X ) =W T
k X + wk0

Wk =Σ−1Mk

wk0 =− 1

2
MT

k Σ−1Mk + ln p(Ck )

We don’t get the nice cancelation of quadratic in x if we don’t have the
same covariance matrix.

−2 −1 0 1 2
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
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Outliers

Logistic regression and the generative model we showed are not robust
towards outliers. The chance of a single point to be far from the right
side of the decision boundary is exponentially small.

You should remember this from linear regression!
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Discrete Data

So far we have only been discussing data that is continuous, what about
discrete data?

Imagine we are trying to create a spam filter for email.

XT
n =



1
0
1
...
0
1
0
0



#1
4U

credit
...

Sales
Success
Urgent
Winner

Lets try to model the
likelihood p(X | Z ),

vocabulary =10000 words

zni ∈{0, 1}10000

If we tried to model Z with a
multinomial we would need a
210000 − 1 dimensional parameter
vector!
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Naive Bayes

What if we assume that the possible outcomes are conditionally
independent?

p(x1, . . . , x10000 | z )
= p(x1 | z ) p(x2 | z , x1) p(x2 | z , x1, x2) . . . p(x10000 | z , x1, . . . , x9999)
= p(x1 | z ) p(x2 | z ) . . . p(x10000 | z )

=

N∏
i=1

p(xi | z )

In other words, if I tell you that an email is spam, the fact it contains the
word ”credit” has no effect on the probability of ”Winner” being in the
same email.

This is a BIG assumption, but interestingly, the algorithm still works well
with many problems.
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Pros/Cons (Murphy 8.6.1)
1. Easy to fit?

I Generative is easy (Naive Bayes is just counting)
I Logistic regression requires solution to complex optimization problem

2. Fit classes Separately?
I We estimate the parameters of each class of a generative model

independently.
I All parameters interact in a discriminative model, so we must retrain

with new class
3. Handle missing features?

I Generative models can handle data Missing at Random(MAR) well
I Descriminative assumes data always available to be conditioned on

4. Work with unlabeled training data?
I Semi-supervised learning easier with generative than descriminative

models
5. Can handle feature preprocessing?

I Hard to define a generative model that can handle data put through
pre-processing (basis functions,etc.)

6. Well-calibrated probabilities?
I Some generative models can have extreme posterior values b/c of

assumptions they make (ex. Naive Bayes)
I Discriminative models usually don’t have this problem (ex. logistic

regression)
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