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Notation

𝒟 𝒟 dataset with 𝑁 samples

𝑥𝑛 𝑥 𝑛 n-th input sample 

𝑧𝑛 𝑦 𝑛 target output for n-th sample

𝑍 𝒚 = 𝑦 1 , 𝑦 2 , … , 𝑦 𝑁 𝑇

𝑦(𝑥) 𝑦(𝑥) output computed for input 𝑥 by model

𝑦(𝑥𝑛) 𝑌 𝑛 output computed for n-th input sample 
by model

𝒀 = 𝑌 1 , 𝑌 2 , … , 𝑌 𝑁 𝑇

𝑊 𝒘 weights (model parameters)



Crickets

CHIRP, CHIRP

Chirps per second versus 
temperature.



In an ideal world…

Cricket-Chirp model:   𝑦 =
𝑓𝑤 𝑥

fit model parameters 𝑤



Suppose that a biologist is not available. 

Can we make predictions without a scientific 
model?



Linear regression

Given the dataset

𝒟 = 𝑥 𝑛 , 𝑦 𝑛 , 𝑛 = 1, … , 𝑁

we want to fit the linear model

𝑦 𝑥 = 𝑎𝑥 + 𝑏 .

We define the feature map

𝝓:ℝ → ℝ2, 𝝓 𝑥 = 𝑥, 1 𝑇

and can formulate our linear model as

𝑦 𝑥 = 𝒘𝑇𝝓 𝑥

with 𝒘 = 𝑎, 𝑏 𝑇.

Using the squared prediction error we 
obtain the objective function

𝐸 𝒘 =  

𝑛=1

𝑁

𝑦(𝑛) −𝒘𝑇𝝓 𝑛 2

where 𝝓 𝑛 ≔ 𝝓(𝑥 𝑛 ).

Chirps per second versus 
temperature.



Linear regression in matrix form

In matrix form the error function is

𝐸 𝒘 = 𝒚𝑇 −𝒘𝑇𝚽 T 𝒚𝑇 −𝒘𝑇𝚽

with 𝒚𝑛 = 𝑦 𝑛 and 𝚽𝑖𝑗 = 𝜙𝑖 𝒙
𝑗 .

Minimum error is obtained by

𝒘 = 𝚽𝚽𝑇 −1𝚽 𝒚

where 𝚽𝚽𝑇 −1𝚽 is called the Moore-
Penrose pseudo-inverse of 𝚽.

𝚽𝚽𝑇 is a 𝑀x𝑀 matrix where 𝑀 is the 
number of basis functions. 
⇒ 𝑂(𝑀3) operations to calculate 𝚽𝚽𝑇 −1.

Chirps per second versus 
temperature.





More complex basis functions

We can also use a more complex model, for
example a 3th order polynomial

𝑦 𝑥 = 𝑤1 +𝑤2𝑥 + 𝑤3𝑥
2 +𝑤4𝑥

3 .

This yields the feature map

𝝓 𝑥 =

1
𝑥
𝑥2

𝑥3

.

Chirps per second versus 
temperature.

Quality of solution? Worse.
Model complexity? Higher.
Why? Model does not match data.



Dealing with unknown basis functions

One way to deal with overfitting is by using regularization. 
However it will not help much if the basis functions do not match 

the data.

So, what should we do if we do not know the model?

Is there a universal set of basis functions that can approximate 
arbitrary functions reasonably well?



Linear regression using “bump” functions

H. Takeda. Kernel Regression for Image Processing and Reconstruction. 2006.

Approximate the function with a sum of bump-shaped 
functions.



Radial basis functions (RBFs)

𝛼 = 0.2,𝑚 = 0

Gaussian Radial Basis Functions (RBFs):

𝜙𝑖 𝒙 = exp −
𝒙 −𝒎 𝑖 2

2𝛼2

The center is at 𝒎 𝑖 and 𝛼 determines the 
width of the bump.

Advantage: They decrease smoothly to zero 
and do not show osciallatory behavior 
unlike higher order polynomials.

𝛼 = 0.1,𝑚 = −0.15;𝑚 = +0.15



Gaussian radial basis functions (RBFs)

Gaussian RBF in two dimensional space.



Linear regression using RBFs

Approximation of sin(10𝑥) by
16 Gaussian RBFs. 

Black line: original function
Red line: regression

Use 

𝜙𝑖 𝒙 = exp −
𝒙 −𝒎 𝑖 2

2𝛼2

with 𝑖 = 1,… , 16 as basis functions.

Apply linear regression.

In one dimension this seems to work 
well, but does it scale to higher 
dimensions?



Curse of dimensionality

Dimensions # of basis functions / 
weights

1 16

2 162 = 256

3 163 = 4096

4 164 = 65 536

5 165 = 1 048 576

⋮ ⋮

10 1610 ≈ 1012

To cover the data with a constant discretization level (number of 
RBFs per unit volume) the number of basis functions and 
weights grows exponentially with the number of dimensions.

1D

2D

Is there a way to reduce the number of required weights?



DUAL REPRESENTATION



Notation

𝒟 𝒟 dataset with 𝑁 samples

𝑥𝑛 𝑥 𝑛 n-th input sample 

𝑧𝑛 𝑦 𝑛 target output for n-th sample

𝑍 𝒚 = 𝑦 1 , 𝑦 2 , … , 𝑦 𝑁 𝑇

𝑦(𝑥) 𝑦(𝑥) output computed for input 𝑥 by model

𝑦(𝑥𝑛) 𝑌 𝑛 output computed for n-th input sample 
by model

𝑌 𝒀 = 𝑌 1 , 𝑌 2 , … , 𝑌 𝑁 𝑇

𝑊 𝒘 weights (model parameters)



Row space and null space of a matrix

Let 𝐴 ∈ ℝ𝑁×𝑀 be a matrix and let 
𝑨𝒊 = (𝐴𝑖1, … , 𝐴𝑖𝑀) be its 𝑖th row.

The row space 𝒜 of 𝐴 is the set of 
all possible linear combinations of its 
rows, 𝒜 = span 𝑨𝟏, … , 𝑨𝒏 .

The null space ker 𝐴 of 𝐴 is the 
orthogonal complement of 𝒜, 
ker 𝐴 = 𝒜⊥ = 𝒙 ∈ ℝ𝑀: 𝐴𝒙 = 𝟎 .

Every element 𝒗 in the null space of 
𝐴 is orthogonal to all rows of 𝐴,
𝑨𝒊 ⋅ 𝒗 = 𝟎 ∀𝑖 ∈ 1,… ,𝑁 .

𝒜 = 𝑐1(1,0,0) + 𝑐2(1,1,0), 𝒄 ∈ ℝ2

𝐴 =
1 0 0
1 1 0

ker 𝐴 = 𝒜⊥ = 𝑐(0,0,1), 𝑐 ∈ ℝ



Orthogonal Complement and Decomposition

Orthogonal decomposition: Any 
𝒘 ∈ ℝ𝑁 can be written uniquely in 
the form 

𝒘 =  𝒘 + 𝒛
with  𝒘 ∈ 𝒜 and 𝒛 ∈ 𝒜⊥.

𝒜 = 𝑐1(1,0,0) + 𝑐2(1,1,0), 𝒄 ∈ ℝ2

𝒘 = 2,3,5
 𝒘 = 2,3,0
𝒛 = 0,0,5

Let 𝒜 be a subspace of ℝ𝑁. 

𝒜⊥ = 𝑐(0,0,1), 𝑐 ∈ ℝThe orthogonal complement 𝒜⊥ of
𝒜 is the set of all vectors that are
orthogonal to all elements of 𝒜,
𝒜⊥ = 𝒛 ∈ ℝ𝑁: 𝒙𝑇𝒛 = 0 ∀𝒙 ∈ 𝒜 .

𝒜

𝒜⊥



Null space of training set

Let 𝒳 = 𝒙 𝑛 , 𝑛 = 1,… ,𝑁 be the set of 
all training points. 

Consider the predictions of the model
𝑦 𝒙 = 𝒘𝑇𝒙

on the training set, i.e. 𝒙 ∈ 𝒳.

Using orthogonal decomposition we write 
𝒘 =  𝒘+ 𝒛

with  𝒘 ∈ span(𝒳) and 𝒛 ∈ 𝒳⊥.

The prediction becomes
𝑦 𝑥 =  𝒘 + 𝒛 𝑇𝒙 =  𝒘𝑇𝒙 + 𝒛𝑇𝒙 =  𝒘𝑇𝒙.

Hence we can assume that
𝒘 ∈ span 𝒳 .



Dual representation

The weight vector 𝒘 is thus a linear combination of the training 
samples 𝒳, 

𝒘 =  

𝑛=1

𝑁

𝑎𝑛 𝒙
𝑛 .

The parameters 𝒂 = (𝑎1, … , 𝑎𝑁) are called the dual parameters. 

This also applies when using basis functions,

𝒘 =  

𝑛=1

𝑁

𝑎𝑛 𝝓 𝒙 𝑛 .

There are as many dual parameters as training samples. Their 
number is independent of the number of basis functions.



Predictions in dual representation

Substituting 𝒘 back into the linear regression 𝑦 𝒙 = 𝒘𝑇𝝓(𝒙)
yields

𝑦 𝒙 =  

𝑛=1

𝑁

𝑎𝑛 𝝓 𝑛 𝑇
𝝓(𝒙) =  

𝑛=1

𝑁

𝑎𝑛 𝐾 𝒙 𝑛 , 𝒙 .

with the kernel function of 𝝓,

𝐾 𝒙, 𝒚 ≔ 𝝓 𝒙 𝑇𝝓 𝒚 .

Using the Gram matrix 

𝑲𝑚𝑛 ≔ 𝐾 𝒙 𝑚 , 𝒙 𝑛 = 𝝓 𝒙 𝑚 𝑇
𝝓 𝒙 𝑛

the predictions on the training set are

𝑌 𝑚 = 𝑦 𝒙 𝑚 =  

𝑛=1

𝑁

𝑎𝑛 𝐾 𝒙 𝑛 , 𝒙 𝑚 =  

𝑛=1

𝑁

𝑎𝑛𝑲𝑚𝑛

𝒀 = 𝒂𝑻𝑲 with  𝒀 = 𝑌 1 , 𝑌 2 , … , 𝑌 𝑁 𝑇
.

𝝓 𝑚 = 𝝓 𝒙 𝑚



Solution of dual representation

Primal representation:

𝐸 𝒘 = 𝒚𝑇 −𝒘𝑇𝚽 2
2

where 𝚽 is the matrix of feature
vectors.

Solution:

𝒘 = 𝚽𝚽𝑇 −1𝚽𝒚 = 𝚽+𝐲

Complexity is 𝑂(𝑀3) where 𝑀 is the
number of basis functions.

Predictions:

𝑦 𝒙 = 𝒘𝑇𝝓(𝒙)

Dual representation:

𝐸 𝒂 = 𝒚𝑇 − 𝒂𝑇𝑲 2
2

where 𝐊 is the gram matrix (also 
called kernel matrix).

Solution:

𝒂 = 𝐊𝐊𝑇 −1𝐊 𝒚 = 𝑲+𝒚

Complexity is 𝑂(𝑁3) where 𝑁 is the
number of training samples.

Predictions:

𝑦 𝒙 =  

𝑛=1

𝑁

𝑎𝑛 𝐾(𝒙
𝑛 , 𝒙)

“Component 𝑎𝑛 weighted with 

similarity to training sample 𝒙 𝑛 .”



Why is the dual representation useful?

𝑦 𝒙 =  

𝑛=1

𝑁

𝑎𝑛 𝐾(𝒙
𝑛 , 𝒙)

𝑁 is the number of training samples.

Lots of basis functions and moderate number of training samples:

⇒ dual representation saves lots of parameters.



Example: Kernel of RBF basis (not RBF kernel)

Gaussian RBF basis functions:

𝜙𝑖 𝒙 = exp −
𝒙 −𝒎 𝑖 2

2𝛼2
, 𝑖 = 1,… ,𝑀

Calculate kernel:

𝐾 𝒙, 𝒚 = 𝝓 𝒙 𝑇𝝓 𝒚 = 

𝑖=1

𝑀

𝜙𝑖 𝒙 𝜙𝑖 𝒚

= exp −
𝒙2 + 𝒚2

2𝛼2
 

𝑖=1

𝑀

exp
𝒎 𝑖 𝒙 + 𝒚 −𝒎 𝑖 2

𝛼2

Linear regression:

𝑦 𝒙 =  

𝑛=1

𝑁

𝑎𝑛 𝐾 𝒙 𝑛 , 𝒙

where 𝑁 is number of training samples.



Example: Kernel of polynomial basis

The polynomial basis of order 𝐷

𝜙𝑖 𝑥 = 𝑥𝑖−1, 𝑖 = 1,… , 𝐷

induces the kernel

𝐾 𝑥, 𝑦 = 𝝓 𝑥 𝑇 𝝓 𝑦 = 

𝑖=1

𝐷

𝑥𝑖−1 𝑦𝑖−1 =  

𝑖=0

𝐷−1

(𝑥𝑦)𝑖 =
1 − 𝑥𝑦 𝐷

1 − 𝑥𝑦

and the Gram matrix

𝐾𝑛𝑚 = 𝐾 𝑥 𝑛 , 𝑥 𝑚 =
1 − 𝑥 𝑛 𝑥 𝑚 𝐷

1 − 𝑥 𝑛 𝑥 𝑚
.

Evaluating the kernel is much cheaper than calculating the 
mapping 𝝓 into feature space and the scalar product explicitly.



PROPERTIES OF KERNELS



Notation

𝒟 𝒟 dataset with 𝑁 samples

𝑥𝑛 𝑥 𝑛 n-th input sample 

𝑧𝑛 𝑦 𝑛 target output for n-th sample

𝑍 𝒚 = 𝑦 1 , 𝑦 2 , … , 𝑦 𝑁 𝑇

𝑦(𝑥) 𝑦(𝑥) output computed for input 𝑥 by model

𝑦(𝑥𝑛) 𝑌 𝑛 output computed for n-th input sample 
by model

𝑌 𝒀 = 𝑌 1 , 𝑌 2 , … , 𝑌 𝑁 𝑇

𝑊 𝒘 weights (model parameters)



Properties of a kernel

Calculate 𝚽𝑇𝚽 component-wise,

𝚽𝑇𝚽 mn = 

𝑘

𝚽𝑇
𝑚𝑘𝚽𝑘𝑛 = 

𝑘

𝚽𝑘𝑚𝚽𝑘𝑛

= 𝝓 𝒙 𝑚 𝑇
𝝓 𝒙 𝑛 = 𝐾𝑚𝑛 .

Thus we have
𝑲 = 𝚽𝑇𝚽

with K symmetric.

𝑲 is positive semi-definite, that is 𝒃𝑇𝑲𝒃 ≥ 𝟎 for any 𝒃, since

0 ≤ 𝚽𝒃 2
2 = 𝒃𝑇𝚽𝑇𝚽𝒃 = 𝒃𝑇𝑲𝒃 for any 𝒃.

𝚽𝑖𝑗 = 𝝓𝑖 𝒙 𝑗



When is a function a kernel?
Mercer‘s theorem (for finite input spaces): Consider a finite input space 𝒳 =

𝒙 1 , … , 𝒙 𝑁 with 𝐾 𝒙 𝑛 , 𝒙 𝑚 a function on 𝒳.

Then 𝐾 𝒙 𝑛 , 𝒙 𝑚 is a kernel function, that is a scalar product in a feature 

space, if and only if 𝐾 is symmetric and the matrix 𝑲𝑛𝑚 = 𝐾 𝒙 𝑛 , 𝒙 𝑚 is 

positive semi-definite.

Proof.
𝑲 symmetric ⟹ The eigenvalue decomposition has the form 𝑲 = 𝑽𝚲𝑽𝑇, 
where 𝚲 is a diagonal matrix containing the eigenvalues 𝜆𝑡 = 𝚲𝑡𝑡 of 𝑲, and 𝑽
is an orthogonal matrix containing the eigenvectors 𝑽⋅𝑡.

𝑲 is positive semi-definite ⟹ All eigenvalues are non-negative, 𝜆𝑡 ≥ 0.

Define the feature map 

𝝓𝑡 𝒙 𝑛 = 𝜆𝑡 𝑽𝑛𝑡

and see that it corresponds to the kernel by calculating the scalar product

𝝓 𝒙 𝑛 𝑇
𝝓 𝒙 𝑚 = 

𝑡=1

𝑁

𝑽𝑛𝑡𝜆𝑡𝑽𝑚𝑡 = 𝑽𝚲𝑽𝑇 𝑛𝑚 = 𝑲𝑛𝑚 .

∎



Making kernels from kernels
Use the following rules to construct more complex kernels from simple ones.

Let 𝐾1 and 𝐾2 be kernels on 𝒳 ⊆ ℝ𝑛, then the following functions are kernels:

1. 𝐾 𝒙, 𝒚 = 𝐾1 𝒙, 𝒚 + 𝐾2 𝒙, 𝒚 ,
2. 𝐾 𝒙, 𝒚 = 𝑎 𝐾1 𝒙, 𝒚 for 𝑎 > 0,
3. 𝐾 𝒙, 𝒚 = 𝐾1 𝒙, 𝒚 𝐾2 𝒙, 𝒚 ,

4. 𝐾 𝒙, 𝒚 = 𝐾3 𝝓 𝒙 ,𝝓 𝒚 for 𝐾3 kernel on ℝ𝑚 and 𝝓:𝒳 → ℝ𝑚,

5. 𝐾 𝒙, 𝒚 = 𝒙𝑇𝑩𝒚 for 𝑩 symmetric and positive 
semi-definite 𝑛 × 𝑛 matrix.

Proofs.
Fix a finite set of points 𝒙1, … , 𝒙𝑙 and let 𝐊,𝑲1, 𝑲2 be the corresponding 
Gram matrices of the kernel functions 𝐾,𝐾1, 𝐾2.

Obviously the resulting 𝑲 is symmetric for every case. 

It remains to be shown that 𝑲 is positive semi-definite, that is

𝒛𝑇𝑲𝒛 ≥ 0 for all 𝒛.



Making kernels from kernels
1. 𝐾 𝒙, 𝒚 = 𝐾1 𝒙, 𝒚 + 𝐾2 𝒙, 𝒚

We have

𝒛𝑇 𝑲1 +𝑲2 𝒛 = 𝒛𝑇𝑲1𝒛 + 𝒛𝑇𝑲2𝒛 ≥ 0

since 𝐾1 and 𝐾2 are positive semi-definite.

2. 𝐾 𝒙, 𝒚 = 𝑎 𝐾1 𝒙, 𝒚 for 𝑎 > 0

Similarly, we have

𝒛𝑇𝑎𝑲1𝒛 = 𝑎 𝒛𝑇𝑲1𝒛 ≥ 0 .



Making kernels from kernels
3. 𝐾 𝒙, 𝒚 = 𝐾1 𝒙, 𝒚 𝐾2 𝒙, 𝒚

We explicitly construct a feature space corresponding to 𝐾 𝒙, 𝒚 , 

𝐾 𝒙, 𝒚 = 𝐾1 𝒙, 𝒚 𝐾2 𝒙, 𝒚 = 𝝓𝟏 𝒙 𝑇𝝓𝟏 𝒚 𝝓𝟐 𝒙 𝑇𝝓𝟐 𝒚

= 

𝑖

𝜙1 𝒙 𝑖 𝜙1 𝒚 𝑖  

𝑗

𝜙2 𝒙 𝑗 𝜙2 𝒚 𝑗

= 

𝑖,𝑗

𝜙1 𝒙 𝑖𝜙2 𝒙 𝑗 𝜙1 𝒚 𝑖𝜙2 𝒚 𝑗 = 𝝓 𝒙 𝑇𝝓 𝒚

with 𝝓 𝒙 = 𝝓𝟏 𝒙 ⊗𝝓𝟐 𝒙 (Kronecker product).



Making kernels from kernels
4. 𝐾 𝒙, 𝒚 = 𝐾3 𝝓 𝒙 ,𝝓 𝒚 for 𝐾3 kernel on ℝ𝑚 and 𝝓:𝒳 → ℝ𝑚

Since 𝐾3 is a kernel for all input values there is nothing to prove.

5. 𝐾 𝒙, 𝒚 = 𝒙𝑇𝑩𝒚 for 𝑩 symmetric and positive 
semi-definite 𝑛 × 𝑛 matrix

A positive-definite matrix has exactly one square root 𝑩  1 2 with the property

𝑩  1 2𝑩  1 2 = 𝑩.

Define the feature map 𝝓 𝒙 = 𝑩  1 2𝒙 and see that 𝝓 𝑥 𝑇𝝓 𝑦 =

𝑩  1 2𝒙
𝑇
𝑩  1 2𝒚 = 𝒙𝑻𝑩  𝑻 𝟐𝑩  𝟏 𝟐𝒙 = 𝒙𝑇𝑩𝒚 = 𝐾 𝒙, 𝒚 .

∎



EXAMPLE AND SUMMARY



Notation

𝒟 𝒟 dataset with 𝑁 samples

𝑥𝑛 𝑥 𝑛 n-th input sample 

𝑧𝑛 𝑦 𝑛 target output for n-th sample

𝑍 𝒚 = 𝑦 1 , 𝑦 2 , … , 𝑦 𝑁 𝑇

𝑦(𝑥) 𝑦(𝑥) output computed for input 𝑥 by model

𝑦(𝑥𝑛) 𝑌 𝑛 output computed for n-th input sample 
by model

𝑌 𝒀 = 𝑌 1 , 𝑌 2 , … , 𝑌 𝑁 𝑇

𝑊 𝒘 weights (model parameters)



Example: Gaussian kernel
Linear regression:

𝑦 𝒙 =  

𝑛=1

𝑁

𝑎𝑛 𝐾 𝒙 𝑛 , 𝒙

„Similarity“ between data points 𝒙 and 𝒚 is
calculated by the Gaussian kernel,

𝐾 𝒙, 𝒚 = exp −
𝒙 − 𝒚 2

2𝜎2
,

where 𝜎 is a scale parameter.

This puts a bump shaped function on every
training sample,

𝑦 𝒙 =  

𝑛=1

𝑁

𝑎𝑛 exp −
𝒙 − 𝒙 𝑛 2

2𝜎2
.

Due to the fast decline of the exponential
function, data points far away do not 
influence the result.

x:  training sample

Is this really a kernel?
Yes, use rules from „Making 
kernels from kernels“ to prove it.

Corresponding feature space?
Infinite dimensional, will be 
shown in an exercise.



Example: Gaussian kernel

https://alliance.seas.upenn.edu/~cis520/wiki/index.php?n=Lectures.LocalLearning

Linear regression using a Gaussian kernel with 𝜎 = 0.5.
Generating function was linear.



Example: Gaussian kernel

https://alliance.seas.upenn.edu/~cis520/wiki/index.php?n=Lectures.LocalLearning

Linear regression using a Gaussian kernel with 𝜎 = 2.0.
Generating function was linear.



Example: Gaussian kernel

https://alliance.seas.upenn.edu/~cis520/wiki/index.php?n=Lectures.LocalLearning

Linear regression using a Gaussian kernel with 𝜎 = 4.0.
Generating function was linear.



Example: Gaussian kernel

https://alliance.seas.upenn.edu/~cis520/wiki/index.php?n=Lectures.LocalLearning

Linear regression using a Gaussian kernel with 𝜎 = 8.0.
Generating function was linear.



Example: Gaussian kernel

𝐾 𝒙, 𝒚 = exp −
𝒙 − 𝒚 2

2𝜎2

The quality of the result is very sensitive to the choice of the variance 𝜎.

Use cross-validation to choose the right value.



Combining model-based and model-free approaches

Problem: Gaussian kernel cannot
extrapolate, since

 𝑛 𝑎𝑛 exp −
𝒙−𝒙 𝑛 2

2𝜎2
→ 0

further away from the training set.  

If there is a feature space 𝝓(𝒙) that  
partly explains the data, we can add 
the kernel induced by that feature 
space, 𝝓 𝒙 𝑇𝝓 𝒚 , to a generic 
kernel 𝐾2 𝒙, 𝒚 to obtain a better 
fit.

𝐾 𝒙, 𝒚 = 𝝓 𝒙 𝑇𝝓 𝒚 + 𝐾2 𝒙, 𝒚

Here, we could combine a linear 
model, 𝝓 𝒙 = 𝒙, with the Gaussian 
kernel 𝐾2 𝒙, 𝒚 . 

Linear model: computes general 
trend of data.

Gaussian kernel: captures local 
variations.



Commonly used kernels

 Linear: 𝐾 𝒙, 𝒚 = 𝒙𝑇𝒚

 Polynomial: 𝐾 𝒙, 𝒚 = 𝒙𝑇𝒚 + 𝑐
𝑑

 Gaussian: 𝐾 𝒙, 𝒚 = exp −
𝒙−𝒚 2

2𝜎2

 Sometimes functions are used as kernels that 
are not positive semi-definite. Usually this 
works but it can lead to strange results.



Applications of kernels

 Regression

 Gaussian Processes (GPs)

 Classification (especially Support Vector 
Machines)

 Principal Component Analysis (PCA)

 Every algorithm with a scalar product.

 Kernels can also be defined on domains other 
than ℝ𝑁, for example strings. This allows the 
above methods to be applied on new domains.



Summary

 Kernels compute the value of the scalar 
product in a high dimensional feature space 
without explicitly computing the features.

 They can be used in any model that depends 
(or that can be rewritten so that it depends) 
on the scalar product of the training samples.

 Not every function is a kernel.

 Use kernel construction rules to prove that a 
function is a valid kernel.
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