
Basic Linear Regression
by Grady Jensen

Reading Material:
”Pattern Recognition and Machine Learning” by Bishop [ch. 3.1, 3.2, 3.6]

Further extra reading:
”Machine Learning: A Probabilistic Perspective” by Murphy [ch. 7.2 - 7.3, 7.5.4,]

Note: these slides are adapted from slides originally by Christian Osendorfer
Most figures are from C. Bishop: ”Pattern Recognition and Machine Learning”
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Notation

Symbol Meaning

s a scalar number is lowercase and not bold
S A vector is uppercase
S a matrix is uppercase and bold

y(X ) predicted value of inputs X
z or Z vector of targets
zi or Zi The target of the i’th example

w0 a bias term ( not to be confused with bias in general)
φ() a basis function
E () an error function

Ẽ () regularized error function
D The training data
Φ† Moore-Penrose pseudoinverse of Φ

There is not a special symbol for vectors or matrices augmented by the bias term,
w0. Assume it is always included.
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A noisy real-valued function

x

z
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−1

0

1

inputs: X = (x1, . . . , xN )T (1)

targets: z = (z1, . . . , zN )T, zi = y(xi) + ε = sin(2πxi) + ε (2)

Most figures are from C. Bishop: ”Pattern Recognition and Machine Learning”
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Fitting a function to data.

Common approach: Sum of squared Errors

Try to minimize:

ED(W ) =
1

2

N∑
[y(xn ,W )− zn ]

2 (3)

We learn the coefficients, W , by minimizing some of the error function
that gives us a measure for the ”misfit” between our model and the data
points we have.

4 / 18



Model: 0th order polynomial

x

z

M = 0

0 1

−1

0

1

y(xn ,w) = w0

ED(w0) =
1

2

N∑
(w0 − zn)

2
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Model: 1st order polynomial

x

z

M = 1

0 1

−1

0

1

y(xn ,W ) = w0 + w1x

ED(W ) =
1

2

N∑
(w0 + w1xn − zn)

2
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Model: 3rd order polynomial

x

z

M = 3

0 1

−1

0

1

y(xn ,W ) = w0 + w1x + w2x
2 + w3x

3

ED(W ) =
1

2

N∑
[y (xn ,W )− zn ]

2
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Model: 9th order polynomial

x

z

M = 9

0 1

−1

0

1

y(xn ,W ) =

M∑
j=0

wj x
j

ED(W ) =
1

2

N∑
[y (xn ,W )− zn ]

2
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Problem Definition

We have input vectors X and associated output values z . We want to
describe the underlying functional relation between them.

What about the following simple model? (Look familiar?)

y(Xn ,W ) = w0 +

M−1∑
j=1

wjφj (Xn) = W TΦ(Xn) (4)

where
φ basis function — many choices, can be nonlinear
w0 bias — equivalent to defining φ0 ≡ 1

It is linear in W !

ED(W ) =
1

2

N∑[
W TΦ(xn)− zn

]2
(5)
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Typical Basis Functions

Polynomials φj (x ) = x j

Gaussian φj (x ) = e
−(x−µj )

2

2s2

Logistic Sigmoid
φj (x ) = σ(

x−µj

s ),

where σ(a) = 1
1+e−a
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Optimal Solution

To compute the optimal solution, we need to minimise the error function
ED with respect to W :

ED(W ) =
1

2

N∑(
W TΦ(xn)− zn

)2
=

1

2
(ΦW − z )T (ΦW − z ) (6)

with

Φ =


φ0(X1) φ1(X1) . . . φM−1(X1)

φ0(X2) φ1(X2)
...

...
...

. . .

φ0(XN ) φ1(XN ) . . . φM−1(XN )


being the design matrix of φ.
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Optimal Solution

Therefore we can compute the gradient error function w.r.t. W by taking
the derivative of ED(W ).

∇WED(W ) =
∂

∂W

1

2
(ΦW − Z )T (ΦW − Z ) (7)

= −ΦT (ΦW − Z ) (8)

= 0 (9)

(The steps from (7) to (8) are not trivial, but Eqs. (71) and (81) of the
matrix cook book can help you.) Setting the gradient to zero we get
normal equations of (ordinary) least squares problem:

Woptimal = (ΦTΦ)−1ΦT︸ ︷︷ ︸
=Φ†

z . (10)

Φ† is called Moore-Penrose pseudo-inverse of Φ (because for an
invertible square matrix, Φ† = Φ−1).
Second derivative: ΦTΦ is (semi) positive definite.
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Computational aspect

Computing the solution WOptimal using the normal equations is not such
a great idea. Why?

I If Φ is not full rank, (ΦTΦ)−1 does not exist (why? how can rank
deficiency happen?)

I Even if Φ is full rank, it can be ill-conditioned (???), (i.e., κ(Φ) is
large), ΦTΦ will be even worse (κ(ΦTΦ) = κ(Φ)2).

Applied numerical computing :)
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Fighting Overfitting (Split up data)

Intuitively, the use of high level polynomials causes the equation to fit
itself to the noise in the data.

I Use training and test sets of the data

I Use Root Mean Square (RMS) to normalize for differences in set
sizes.

ERMS =
√

2E(W ∗)
N

M

E
R
M
S

 

 

0 3 6 9
0

0.5

1
Training
Test

W ∗ is the value of W that minimizes the error function E
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Fighting Overfitting

Heuristic:

# of data points > 5 or 10 times
number of parms.

x

t

N = 15

0 1

−1

0

1

x

z

N = 100

0 1

−1

0

1

Sadly, the number of parameters isn’t always a good measure of complexity. A
much better approach is to choose complexity based on problem to be solved.
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Controlling overfitting with regularization
MLE often suffers from overfitting  use regularisation:

ẼD(W ) =
1

2

N∑[
W TΦ(Xn)− Zn

]2
+
λ

2
‖W ‖22 (11)

Where,
‖W ‖22 ≡W TW = w2

0 + w2
1 + w2

2 + · · ·+ w2
m

λ = weight of regularization term

x

z

ln λ = − 18

0 1

−1

0

1

x

z

ln λ = 0

0 1

−1

0

1

Penalty term discourages coefficients from reaching large values...

Techniques of regularization, like sum of squares, are called shrinkage methods in
statistics because they reduce the value of coefficients.
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Regularization

ẼD(W ) =
1

2

N∑[
W Tφ(xn)− zn

]2
+
λ

2
‖W ‖q (12)

⇒ this is like a Lagrange
term specifying an additional
constraint:

M∑
‖wj‖q ≤ η

↪→ most often, use quadratic
regulariser (`2, ridge
regression): q = 2, i.e.

M∑
‖wj‖2 = W TW

� ���
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17 / 18



Bias and Variance

−→ Regularization ←−
mediates between these extremes.
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Bayesian Linear Regression
by Grady Jensen

Reading Material:
”Pattern Recognition and Machine Learning” by Bishop [ch. 3.3 - 3.3.2, 3.4 - 3.5]

Further extra reading:
”Machine Learning: A Probabilistic Perspective” by Murphy [ch. 7.4 - 7.6]

Note: these slides are adapted from slides originally by Christian Osendorfer
Most figures are from C. Bishop: ”Pattern Recognition and Machine Learning”
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Notation

Symbol Meaning

s a scalar number is lowercase and not bold
S A vector is uppercase
S a matrix is uppercase and bold

y(X ) predicted value of inputs X
z or Z vector of targets
zi or Zi The target of the i’th example

w0 a bias term ( not to be confused with bias in general)
φ() a basis function
E () an error function

Ẽ () regularized error function
D The training data
Φ† Moore-Penrose pseudoinverse of Φ

There is not a special symbol for vectors or matrices augmented by the bias term,
w0. Assume it is always included.
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A noisy real-valued function

x

z

0 1

−1

0

1

inputs: X = (x1, . . . , xN )T (1)

targets: z = (z1, . . . , zN )T, zi = y(xi) + ε = sin(2πxi) + ε (2)
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Problem Definition

We have input vectors X and associated output values z . We want to
describe the underlying functional relation between them.

What about the following simple model? (Look familiar?)

y(X ,W ) = w0 +

M−1∑
j=1

wjφj (X ) = W TΦ(X ) (3)

where
φ basis function — many choices, can be nonlinear
w0 bias — equivalent to defining φ0 ≡ 1

ED(W ) =
1

2

N∑[
W TΦ(xn)− zn

]2
(4)
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Bayesian Regression

Remember from eq (2) at the start of the lecture,

z (Xn) = y(Xn ,W ) + ε
noise

Let’s assume the values of the data have gaussian noise with a mean
equal to y(Xn ,W ) = w0 +w1Xn +w2X

2
n + · · ·+wmXM

n =
∑M

j=0 wjX
j
n

then,

p(Zn | Xn ,W , β) = N (Zn | y(Xn ,W ), β−1) ≈ y(Xn ,W ) (5)

Remember: Without any loss of generality, y(Xn ,W ) = WTφ(Xn )
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Bayesian Likelihood

Assume the points are drawn i.i.d. and we get a likelihood function of

p(Z | X ,W , β) =

N∏
n=1

N (Zn | y(Xn ,W ), β−1) (6)

Or formulated in a more explicit way:

ln p(Z | X ,W , β) =
−β
2

N∑
n=1

[y(Xn ,W )−Zn ]2 +
N

2
lnβ − N

2
ln 2π (7)

Why do we use ln ?
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Bayesian Maximum Likelihood

WML ⇔
∂

∂W
ln p(Z | X ,W , β) = 0 (8)

⇔ ∂

∂W

−β
2

N∑
n=1

[y(Xn ,W )− Zn ]2 = 0 (9)

⇔ ∂

∂W

−1

2

N∑
n=1

[y(Xn ,W )− Zn ]2 = 0

Scaling likelihood by a constant
only changes height, not location
with respect to w

⇔ ∂

∂W

1

2

N∑
n=1

[y(Xn ,W )− Zn ]2︸ ︷︷ ︸ = 0 Minimize instead of maximize

= ED(W ) see equation 4 from the Problem
definition slide

What does this mean?
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Bayesian ML continued...

Now let’s take the derivative with respect to β to get the maximum
likelihood value for β:

∂

∂β
ln p(Z | X ,W , β) = 0 (10)

⇔ ∂

∂β

−β
2

N∑
n=1

[y(Xn ,W )− Zn ]2 +
N

2
lnβ − N

2
ln 2π = 0 (11)

⇔ −1

2

N∑
n=1

[y(Xn ,W )− Zn ]2 +
N

2β
= 0 (12)

⇔ 1

βML
=

1

N

N∑
n=1

[y(Xn ,WML)− Zn ]2 (13)
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Predictive

Plugging in the WML and βML into our likelihood we get a predictive
distribution that allows us to make predictions for new values of x .

p(z | x ,WML, βML) = N (z | y(x ,WML), β−1ML) (14)

Up until now we have been using maximum likelihood to solve our problems. An issue
with ML approaches is that they can overfit the data (when there isn’t a lot of data)

because it chooses the best parameters to fit the training data. In practice, this means
that any new points, that were not trained on, will classify horribly.
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Maximum A Posteriori (a.k.a. MAP)

Recap: For the coin flip experiment, we introduced prior information to
prevent overfitting. By analogy:

train data likelihood prior posterior
coin: D = X p(D | θ) p(θ | a, b) p(θ | D)
regr.: D = {X ,Z} p(Z | X ,W , β) p(W | ·) p(W | X ,Z , ·)

Prior: How to find a good one?

A Gaussian prior encourages small parameter values; this discourages the
curve of the function from varying wildly.

I recall (from Eq. (6)) that our likelihood function p(Z | X ,W , β) is
a Gaussian,

I treat precision β = 1/σ2 as a known parameter (for now),

I know that the conjugate prior for a Gaussian with known variance is
also a Gaussian.
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Posterior Distribution
We can actually find a general closed expression for the posterior! Yay,
conjugate priors!

Posterior parameter distribution

p(W | Z ) = N (W | MN ,SN ) (15)

with

Mean = MN = SN

(
S−10 M0 + βΦTZ

)
(16)

Covariance = S−1N = S−10 + βΦTΦ (17)

S0 = prior’s covariance

Properties of the posterior:
I Since we again have a Gaussian, the MAP solution (i.e the mode)

equals the mean: WMAP = MN .
I In the limit of an infinitely broad prior, S0 → 0, WMAP →WML

I For N = 0, i.e. no data points, we get the prior back.

Φ is the design matrix, i.e. a matrix of basis functions φm (X ), for each m in M .
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Prior distribution example

Let’s introduce an isotropic gaussian distribution with zero mean prior
over w .

p(W | α) = N (W | 0, α−1I) = (
α

2π
)

(M+1)
2 e(−

α
2 W TW ) (18)

Where, α = precision of the distribution

M + 1 =
# of elements in the vector W for
an Mth order polynomial .

This means that the posterior will have the same form as equation 15,
with the following differences:

Mn = βSnΦTZ

S−1N = αI + βΦTΦ
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MAP Solution

Since p(W | X ,Z , α, β) ∝ p(Z | X ,W , β) p(W | α), (19)

we have a new error function to which we can apply negative log and
minimize.

EMAP = − ln p(W | X ,Z , α, β)

EMAP =
β

2

N∑
n=1

[y(Xn ,W )−Zn ]2−N

2
lnβ+

N

2
ln 2π−ln(

α

2π
)

M+1
2 +

α

2
W TW

∂

∂W

β

2

N∑
n=1

[y(Xn ,W )−Zn ]2−N

2
lnβ+

N

2
ln 2π−ln(

α

2π
)

M+1
2 +

α

2
W TW = 0

⇔ ∂
∂W

β
2

∑N
n=1[y(Xn ,W )− Zn ]2 + α

2W
TW = 0

⇔ ∂

∂W

1

2

N∑[
W Tφ(Xn)− Zn

]2
+
λ

2
‖W ‖22︸ ︷︷ ︸

⇒ẼD(W )

= 0, where λ =
α

β

Well, that certainly looks familiar!

13 / 14



Examples of Closed Form Posteriors

Likelihood Prior Posterior Name

Gaussian Uniform Least Squares
Gaussian Gaussian Ridge
Gaussian Laplace Lasso
Laplace Uniform Robust Regression
Student Uniform Robust Regression
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Online Linear Regression
by Grady Jensen

Reading Material:
”Pattern Recognition and Machine Learning” by Bishop[ch. 3.1.3, 3.1.4, 3.3.2]

Further extra reading:
”Machine Learning: A Probabilistic Perspective” by Murphy [ch. 7.6.2 - 7.6.3]

Note: these slides are adapted from slides originally by Christian Osendorfer
Most figures are from C. Bishop: ”Pattern Recognition and Machine Learning”
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Notation

Symbol Meaning

s a scalar number is lowercase and not bold
S A vector is uppercase
S a matrix is uppercase and bold

y(X ) predicted value of inputs X
z or Z vector of targets
zi or Zi The target of the i’th example

w0 a bias term ( not to be confused with bias in general)
φ() a basis function
E () an error function

Ẽ () regularized error function
D The training data
Φ† Moore-Penrose pseudoinverse of Φ

There is not a special symbol for vectors or matrices augmented by the bias term,
w0. Assume it is always included.
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Data Processing

The algorithm for learning maximum likelihood estimates for W assumes
that all data points are available at once (offline learning, batch learning).

What if large data sets are involved so that batch processing of all points
at once is infeasable? What if data points arrive over time (sequentially),
and possibly should be discarded as soon as possible?
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Online Learning: The least-mean-squares (LMS) algorithm

The basic idea is to update W after each newly arriving data point by
applying the following technique which is also called stochastic gradient
descent.

W(τ+1) = Wτ − η∇En (1)

En represents the error function of the nth data point and we assume that
the overall error is given by E =

∑
n En and τ is the iteration number.

The parameter η is called the learning rate and needs to be chosen
carefully in order to achieve convergence of the algorithm.

For the least squares algorithm, its update would look like this:

W(τ+1) = Wτ − η
(
Zn −Wτ

T φ(Xn)
)
φ(Xn)T (2)
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Recursive Least Squares

Determine the optimal learning rate for linear regression.

Defining Rτ = Φτ
TΦτ , we get a recursive relationship over time:

W(τ+1) = Wτ + R(τ+1)
−1X(τ+1)

(
Z(τ+1) −X(τ+1)

TWτ

)

R(τ+1)
−1 = Rτ

−1 −
Rτ
−1X(τ+1)X(τ+1)

TRτ
−1(

1 + X(τ+1)
TRτ

−1X(τ+1)

)

I Initial value for R(0)−1 is usually a diagonal matrix with large entries
on its diagonal.

I No matrix inversions are necessary!

I Versions with weighting/forgetting factors are also possible.
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Bayesian Online

What if we don’t think of this as an optimization problem, but rather
take a Bayesian viewpoint?

Is it possible for us to frame the problem in such a way that takes
advantage of Baye’s rule to make sequential updates to our

approximation to the hidden distribution we are trying to model?
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MAP Solution

Remember, if we introduce a gaussian prior:

p(W ) = N (W | M0,S0) [M0: mean, S0: covariance matrix] (3)

Often we don’t know much about the prior distribution anyway. For a
suitably designed model with independent parameters W , the following
prior is usually reasonable (i.e. an isotropic gaussian):

p(W | α) = N (W | M0 = 0,S0 = α−1I ) (4)

This results in the posterior:

p(W | Z , α, β) ∝ p(Z |W , β)p(W | α)
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Posterior Distribution for a Simple Prior

If we look at our simplified case as shown in equation 4 from the previous
slide:

p(W | α) = N (W | M0 = 0,S0 = α−1I )

the posterior parameters simplify to:

MN = βSNΦTZ (5)

S−1N = αI + βΦTΦ (6)
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Predictive Distribution

Usually, we want to know output z for new values of X—the model
parameters W are just a means to achieve this. To predict z , evaluate

p(z | X ,Z , α, β)︸ ︷︷ ︸
new posterior

=

∫
W

p(z | X ,W , β)︸ ︷︷ ︸
likelihood

p(W | Z , α, β)︸ ︷︷ ︸
old posterior

dW (7)

(coin flip analogy: p(x | D, a, b) =
∫ 1

0
p(x | θ)p(θ | D, a, b) dθ)

Predictive distribution

p(z | X ,Z , α, β) = N (z | M T
Nφ(X ), σ2

N (X )) (8)

with variance

σ2
N (X ) =

1

β
+ φ(X )TSNφ(X ). (9)
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Example of Posterior Predictive
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Green: Underlying function, Blue: Observations, Dark-Red: Mode 10 / 12



A simple example

Bayesian regression for the target values

zn = −0.3 + 0.5xn + ε

where ε is a Gaussian noise term (σ = 0.2).

To model this, we set φ(x ) =
[
1
x

]
and thus

y(x ,W ) = w0 + w1x

Sequential Estimation: The demo shows how the posterior’s breadth gets
smaller as more and more points t are taken into account, and how its
mode converges to the optimum (=correct) values of the weights (white
cross).
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