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3 is assumed to be symmetric (which means, that > 1is also
symmetric) and positive definite.

Cov[X] = E[(X — BIX))(X ~ E[X])"] = =

Diagonal elements of X7
Expectation is linear. E.g., Ela” X] = aT E[X].



In 2d, a bivariate Gaussian is depicted as an ellipse. Why?

3 is real and symmetric and therefore

S=UAU"

U is orthonormal (UU ™ = I).
A is a diagonal matrix of eigenvalues.
And thus:

d
S =UTATUT = UATUT =)

Full rank is assumed.



The Mahalanobis distance can be rewritten:
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Mahalanobis distance: The Euclidean distance of « from w in a rotated and scaled
coordinate system.
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Linear transformation of a Gaussian:

If
X ~N(p, X)
and
Y=AX +¢
then Y is a Gaussian with
EY]=Ap+¢

Cov[Y] = AX AT
or, in compact notation,

Y ~N(Ap+ €& AZAT)



MLE for p

X~ N(IJ'a 2), D= {wi}znzl
Likelihood .
[[VN@ip )
i=1

and thus the negative log-likelihood is
nd n 1 — Tl
710g27r+ §log|2| +§Z(ml —p) X (xy — p) =0, )
—_— Y 1=1

const. depends on X

depends on p,3

We need the derivative w.r.t. p, and therefore first consider:

(i —p) 'S N —p) =2/ e, - 22T p 4 p "2

The derivative of this term w.r.t. g is (repu ag;y —a %ﬂ — (a+aT)y)

X 'y — 28 te, =282 H(u — x))
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So
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(second derivative at pyp g is 235 71)



The trace operator: tr(A) :=) . Aj;; has a cyclic property

tr(ABC) = tr(BCA) = tr(CAB)

that allows the re-casting:

T Az = tr(zT Az) = tr(Azz™)

(@ — 1) "= (@ — ) = tr(E (@ — )@ — )"

One more fact:
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Central Limit Theorem

Let (X1,X5,..., X ) bei.i.d. random variables with finite mean g and
finite covariance X, then

1 n
S, :=+/n gZXFM =8, ~N(0,X%)
=1

if you average i.i.d. variables, then only mean and covariance are retained (everything

else is smoothed away) and a Gaussian remains.



Maximum entropy distributions
How much uncertainty is in a distribution?
Differential entropy for continuous distribution P:
HIP = [ pla)(-log p(a)do

Given mean p and covariance X (and nothing else!), what distribution
has highest differential entropy?

X ~ N(p, ) = arg max(H[P] | E[X] = p, Cov[X] = %)
P
Upper bound on entropy:

5 log((2me)”[5)
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How to sample from N (u, )

3% is real, symmetric and positive definite. Thus, Cholesky decomposition
exists:

LLT =%

where L is lower triangular with strictly positive diagonal entries.

If we can easily sample Z from N(0, I) (we usually can, why?), i.e.
Z ~ N(0,I), then

X=p+LZ=X~NuX)

Why?



How to evaluate NV(u, )

Evaluate density at some point x, e.g. to compute log likelihood.

We need to compute (z — ) 'S (z — p)

»tl=r T

and compute in a numerically stable way

Lz — p)

Also
D
=] = H Lyzj
j=1

(prefer to work in the log domain!)
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Normalisation factor

There is the elementary result for the 1d normal distribution:

G
/e 202 dr = V2702

Remember the eigendecomposition of the covariance matrix:

S=UAU"

Denote by
f(@) = exp (‘i(”” )T (- u))

the unnormalised probability density function of .

We need to compute
[ #a)de
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Normalization factor

Defining y = UT(:B — ), the integral changes as follows (change of
variable):

[ @y = [ 1) ‘jﬂ ay = [ 1)) Uldy = /H o dy
Using the elementary result:

/He Ny - H/dy =TIV = e

Interesting Observation:

diagonal ¥ = p(«x H p(x

In words: For Gaussians, uncorrelated components induce independent
components (what is the general rule?).
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Products of Gaussians

What is the product of two Gaussian pdfs?

N(@ | py, 30) - N(z | po, Xo)

Difficult to answer in moment parameterisation form:

x e~ 2@ = (@—p)

Natural (or: canonical) parameterisation:
_1gT T _ _
x e 2% Az+r a:’ A=Y 1’,’,:2 1/"'

(oc ignores all constants (i.e., terms without x). Do the transformation to natural

parameters on your own!)
A Gaussian pdf is written in information form (or: exponential family
form), if natural parameterisation is used.

16 /24



Products of Gaussians

Using natural parameters, we can write:

N(@ | 1y, 20) - N (@ | o, Ta) oc e 37 Mmtrie, gmhaldsatrie

The result is again a Gaussian, because we can write it in information

form:

x e—%wT(Al—&-Ag):c-i-(rl—&-rg)Tx

Converting it back into moment parameterisation gives a new g and 3:
D=0 =3+ 2y )

Now we can compute the missing normalisation constant for the resulting
Gaussian.

(do back-transformations on your own)



Marginalisation

IC{l,Q,...,d}, X] = (Xi)ie[
What is p(x;)?
Linear Transformation with a selection matrix:

X;=I;X

That is, X ; is Gaussian:

p(il:[) :N(IJ’DEI)



Conditioning

Ic{1,2,...,d}, R={L2,...,d}\I
What is p(z; | g)?
A Gaussian, but what does it look like?

Rather straightforward when using natural parameterisation by
remembering

p(x) = p(zr | zr)p(TR)

Basically, read result after some algebraic reformulations.

Not immediately obvious, if we want the results in moment
parametrisation (needs Schur complement for inverting partitioned
matrices). Thus, just the results:

g = B+ ZrSgR(Tr — pp)

Sir=31u—ZRERRZRI
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Linear Gaussian systems

p(il?) :N(NX?ZX)
p(y|x) =N(Az+ b,y x)

(x, y can have different dimensionalities)

What is p(x | y) and p(y)?

plely) =N |px )y Ex|v)

Sxy = (B3 +ATE] )

Bx)y = x|y (A 3 x(y —b)+ x}lﬂx)

Condition & on a noisy observation of itself.



Let Z = (X, V)T

By observing that p(z) = p(z, y) = p(z)p(y|x) and properly
rearranging we find (see Bishop section 2.3.3):

p(2) =N(pz, 3z)

_ Hx
Knz = <A/J'X+b>

Sy AT
3, = T
AX Ey‘x+A2XA

And finally, Y:

p(y) =N(y| Apx +b,Zy|x + ADxAT)



Inferring an unknown vector from noisy measurements

Assume, that X represents the true, but unknown location of some
object (e.g. could be 2d/3d position). Model this by

X ~ N(NO, 20)

We make noisy observations Y; of X:
Y, ~ N(X7 EY)

This means, we know in what way our sensor errs.
Compared to the general form above, A =1 and b = 0.

p(m | y17y27"'ayn) :N(Mnﬁzn)
Sn = (80 '+ a2, )7

= (2;1 (Z y) + Ealuo)

You can use the same idea to do sensor fusion (different kinds of sensors
with different kinds of measure noise).



Bayes for Gaussian

With the previous formulae, we finally can do a Bayesian approach for
Gaussians. To simplify the derivation, we only consider the case

p(p|D,%).

That is, we want to determine the posterior distribution for p from
observations D = {x1, 3, ..., T, }, where we assume that the
covariance X of these observations is known.

Gaussian prior for p:
p(p) = N (o, Vo)

Then
p(p[D,2) =N(p,, Vi)

V,=(Vo ' +ax 1!
=V,

(57 () vitw)



Bayes for Gaussian

If we don’t know anything about the prior (uninformative prior, i.e.,

V' =0I), then

p(p| D, %) = ( sz,f )

Remember the MLE of p?
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