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N (x |µ,Σ) =
1√

(2π)d |Σ|
exp

(
−1

2
(x − µ)TΣ−1(x − µ)

)

x ∈ Rd , µ ∈ Rd , Σ ∈ Rd×d

Σ is assumed to be symmetric (which means, that Σ−1 is also
symmetric) and positive definite.

E[X ] = µ

Cov[X ] = E[(X − E[X ])(X − E[X ])T ] = Σ

Diagonal elements of Σ?

Expectation is linear. E.g., E[aTX ] = aT E[X ].
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In 2d , a bivariate Gaussian is depicted as an ellipse. Why?

Σ is real and symmetric and therefore

Σ = UΛUT

U is orthonormal (UUT = I ).
Λ is a diagonal matrix of eigenvalues.
And thus:

Σ−1 = U−TΛ−1U−1 = UΛ−1UT =

d∑
i=1

1

λi
u iu

T
i

Full rank is assumed.
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The Mahalanobis distance can be rewritten:

(x − µ)TΣ−1(x − µ) = (x − µ)T

(
D∑
i=1

1

λi
u iu

T
i

)
(x − µ) =

D∑
i=1

1

λi
(x − µ)Tu i u

T
i (x − µ)︸ ︷︷ ︸
yi ∈ R

=

D∑
i=1

y2
i

λi

Mahalanobis distance: The Euclidean distance of x from µ in a rotated and scaled
coordinate system.
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Linear transformation of a Gaussian:
If

X ∼ N (µ,Σ)

and
Y = AX + ξ

then Y is a Gaussian with

E[Y ] = Aµ+ ξ

Cov[Y ] = AΣAT

or, in compact notation,

Y ∼ N (Aµ+ ξ,AΣAT )
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MLE for µ

X i ∼ N (µ,Σ), D = {x i}ni=1

Likelihood
n∏

i=1

N (x i |µ,Σ)

and thus the negative log-likelihood is

nd

2
log 2π︸ ︷︷ ︸

const.

+
n

2
log |Σ|︸ ︷︷ ︸

depends on Σ

+
1

2

n∑
i=1

(x i − µ)TΣ−1(x i − µ)︸ ︷︷ ︸
depends on µ,Σ

:= `(µ,Σ)

We need the derivative w.r.t. µ, and therefore first consider:

(x i − µ)TΣ−1(x i − µ) = xT
i Σ−1x i − 2xT

i Σ−1µ+ µTΣ−1µ

The derivative of this term w.r.t. µ is (helpful:
∂aT y
∂y

= a ,
∂yTAy
∂y

= (A + AT )y)

2Σ−1µ− 2Σ−1x i = 2Σ−1(µ− x i)
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So
∂`(µ,Σ)

∂µ
=

1

2

n∑
i=1

2Σ−1(µ− x i) = Σ−1
n∑

i=1

(µ− x i)

Optimum at

µ∗MLE =
1

n

n∑
i=1

x i

(second derivative at µMLE is 2Σ−1)
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The trace operator: tr(A) :=
∑

i Aii has a cyclic property

tr(ABC ) = tr(BCA) = tr(CAB)

that allows the re-casting:

xTAx = tr(xTAx ) = tr(AxxT )

i.e.

tr((x i − µ)TΣ−1(x i − µ)) = tr(Σ−1(x i − µ)(x i − µ)T )

One more fact:

|Σ| = 1

|Σ−1|
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`(µ,Σ−1) = const.− n

2
log |Σ−1|+ 1

2

∑
i

tr(Σ−1(x i − µ)(x i − µ)T )

( ∂ log |A|
∂A

= A−T , ∂tr(BA)
∂A

= BT )

∂`(µ,Σ−1)

∂Σ−1
= −n

2
ΣT +

1

2

∑
i

(x i − µ)(x i − µ)T

Extremum at

Σ∗MLE =
1

n

∑
i

(x i − µ)(x i − µ)T
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Central Limit Theorem

Let (X 1,X 2, . . . ,X n) be i.i.d. random variables with finite mean µ and
finite covariance Σ, then

Sn :=
√
n

(
1

n

n∑
i=1

X i − µ

)
⇒ Sn ∼ N (0,Σ)

if you average i.i.d. variables, then only mean and covariance are retained (everything

else is smoothed away) and a Gaussian remains.
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Maximum entropy distributions

How much uncertainty is in a distribution?

Differential entropy for continuous distribution P :

H[P ] =

∫
p(x )(− log p(x ))dx

Given mean µ and covariance Σ (and nothing else!), what distribution
has highest differential entropy?

X ∼ N (µ,Σ) = argmax
P

(H[P ] | E[X ] = µ,Cov[X ] = Σ)

Upper bound on entropy:

1

2
log((2πe)D |Σ|)
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How to sample from N (µ,Σ)

Σ is real, symmetric and positive definite. Thus, Cholesky decomposition
exists:

LLT = Σ

where L is lower triangular with strictly positive diagonal entries.

If we can easily sample Z from N (0, I ) (we usually can, why?), i.e.
Z ∼ N (0, I ), then

X = µ+ LZ ⇒ X ∼ N (µ,Σ)

Why?
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How to evaluate N (µ,Σ)

Evaluate density at some point x , e.g. to compute log likelihood.

We need to compute (x − µ)TΣ−1(x − µ)

Σ−1 = L−TL−1

and compute in a numerically stable way

L−1(x − µ)

Also

|Σ| =
D∏
j=1

L2
jj

(prefer to work in the log domain!)
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Normalisation factor

There is the elementary result for the 1d normal distribution:∫
e−

(x−µ)2

2σ2 dx =
√
2πσ2

Remember the eigendecomposition of the covariance matrix:

Σ = UΛUT

Denote by

f (x ) = exp

(
−1

2
(x − µ)TΣ−1(x − µ)

)
the unnormalised probability density function of x .
We need to compute ∫

f (x )dx
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Normalization factor

Defining y = UT (x − µ), the integral changes as follows (change of
variable):∫

f (x )dx =

∫
f (x(y))

∣∣∣∣dxdy
∣∣∣∣dy =

∫
f (x(y))|U |dy =

∫ ∏
i

e
− y2i

2λi dy

Using the elementary result:∫ ∏
i

e
− y2i

2λi dy =
∏
i

∫
e
− y2i

2λi dyi =
∏
i

√
2πλi =

√
(2π)d |Σ|

Interesting Observation:

diagonal Σ⇒ p(x ) =
∏
i

p(xi)

In words: For Gaussians, uncorrelated components induce independent
components (what is the general rule?).
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Products of Gaussians

What is the product of two Gaussian pdfs?

N (x | µ1,Σ1) · N (x | µ2,Σ2)

Difficult to answer in moment parameterisation form:

∝ e−
1
2 (x−µ)TΣ−1(x−µ)

Natural (or: canonical) parameterisation:

∝ e−
1
2 x

TAx+rTx , A = Σ−1, r = Σ−1µ

(∝ ignores all constants (i.e., terms without x ). Do the transformation to natural

parameters on your own!)
A Gaussian pdf is written in information form (or: exponential family
form), if natural parameterisation is used.
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Products of Gaussians

Using natural parameters, we can write:

N (x | µ1,Σ1) · N (x | µ2,Σ2) ∝ e−
1
2 x

TA1x+rT
1 x · e− 1

2 x
TA2x+rT

2 x

The result is again a Gaussian, because we can write it in information
form:

∝ e−
1
2 x

T (A1+A2)x+(r1+r2)
Tx

Converting it back into moment parameterisation gives a new µ and Σ:

Σ = (Σ−11 + Σ−12 )−1, µ = Σ(Σ−11 µ1 + Σ−12 µ2)

Now we can compute the missing normalisation constant for the resulting
Gaussian.

(do back-transformations on your own)
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Marginalisation

I ⊂ {1, 2, . . . , d}, X I := (Xi)i∈I

What is p(x I )?

Linear Transformation with a selection matrix:

X I = I IX

That is, X I is Gaussian:

p(x I ) = N (µI ,ΣI )
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Conditioning

I ⊂ {1, 2, . . . , d}, R = {1, 2, . . . , d} \ I

What is p(x I | xR)?

A Gaussian, but what does it look like?
Rather straightforward when using natural parameterisation by
remembering

p(x ) = p(x I | xR)p(xR)

Basically, read result after some algebraic reformulations.
Not immediately obvious, if we want the results in moment
parametrisation (needs Schur complement for inverting partitioned
matrices). Thus, just the results:

µI |R = µI + ΣIRΣ−1RR(xR − µR)

ΣI |R = ΣII −ΣIRΣ−1RRΣRI
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Linear Gaussian systems

p(x ) = N (µX ,ΣX )

p(y | x ) = N (Ax + b,ΣY |X )

(x ,y can have different dimensionalities)

What is p(x | y) and p(y)?

p(x | y) = N (x | µX |Y ,ΣX |Y )

ΣX |Y = (Σ−1X +ATΣ−1Y |XA)−1

µX |Y = ΣX |Y

(
ATΣ−1Y |X (y − b) + Σ−1X µX

)
Condition x on a noisy observation of itself.
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Let Z = (X ,Y )T :
By observing that p(z ) = p(x ,y) = p(x )p(y |x ) and properly
rearranging we find (see Bishop section 2.3.3):

p(z ) = N (µZ ,ΣZ )

µZ =

(
µX

AµX + b

)
ΣZ =

(
ΣX ΣXAT

AΣX ΣY |X +AΣXAT

)
And finally, Y :

p(y) = N (y | AµX + b,ΣY |X +AΣXAT )
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Inferring an unknown vector from noisy measurements
Assume, that X represents the true, but unknown location of some
object (e.g. could be 2d/3d position). Model this by

X ∼ N (µ0,Σ0)

We make noisy observations Y i of X :

Y i ∼ N (X ,ΣY )

This means, we know in what way our sensor errs.
Compared to the general form above, A = I and b = 0.

p(x | y1,y2, . . . ,yn) = N (µn ,Σn)

Σn = (Σ0
−1 + nΣ−1y )−1

µn = Σn

(
Σ−1y

(∑
i

y i

)
+ Σ−10 µ0

)
You can use the same idea to do sensor fusion (different kinds of sensors
with different kinds of measure noise).
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Bayes for Gaussian
With the previous formulae, we finally can do a Bayesian approach for
Gaussians. To simplify the derivation, we only consider the case
p(µ | D,Σ).

That is, we want to determine the posterior distribution for µ from
observations D = {x 1,x 2, . . . ,xn}, where we assume that the
covariance Σ of these observations is known.

Gaussian prior for µ:
p(µ) = N (µ0,V 0)

Then
p(µ | D,Σ) = N (µn ,V n)

V n = (V0
−1 + nΣ−1)−1

µn = V n

(
Σ−1

(∑
i

x i

)
+V−10 µ0

)
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Bayes for Gaussian

If we don’t know anything about the prior (uninformative prior, i.e.,
V−10 = 0I ), then

p(µ | D,Σ) = N

(
1

n

∑
i

x i ,
1

n
Σ

)

Remember the MLE of µ?
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