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We flip the same coin 10 times:

H T H H T H H H T H

Probability that the next coin flip is T ?

∼ 0 ∼ 0.3 ∼ 0.38 ∼ 0.5 ∼ 0.76 ∼ 1
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30%?

This seems reasonable, but why?

Every flip is random. So every sequence of flips is random, i.e., it has
some probability to be observed.

For the i -th coin flip we write

pi
(
Fi = T

)
= θi .

To denote that the probability distribution depends on θi , we write

pi
(
Fi = T | θi

)
.

Note the i in the index! We are trying to reason about θ11.
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All the randomness of a sequence of flips is governed (modeled) by the
parameters θ1, . . . , θ10:

p
(
H T H H T H H H T H | θ1, θ2, . . . , θ10

)

What do we know about θ1, . . . , θ10? Can we infer something about θ11?
At first sight, there is no connection.

Find θi ’s such that that p
(
H T H H T H H H T H | θ1, θ2, . . . , θ10

)
is as high as possible. This is a very important principle:

Maximise the likelihood of our observation. (Maximum Likelihood)
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???? p
(
H T H H T H H H T H | θ1, θ2, . . . , θ10

)
????

We need to model this
First assumption: The coin flips do not affect each other—independence.

p
(
H T H H T H H H T H | θ1, θ2, . . . , θ10

)
= p1

(
F1 = H | θ1

)
· p2
(
F2 = T | θ2

)
· . . . · p10

(
F10 = H | θ10

)
=

10∏
i=1

pi(Fi = fi | θi)

Notice the i in pi , θi ! This indicates: The coin flip at time 1 is different
from the one at time 2, . . .

But the coin does not change significantly.
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Second assumption: The flips are qualitatively the same—identical
distribution.

10∏
i=1

pi(Fi = fi | θi) =

10∏
i=1

p(Fi = fi | θ)

In total: The 10 flips are independent and identically distributed
(i.i.d.).

Remember θ11? With the i.i.d. assumption we can link it to θ1, . . . , θ10.

Now we can write down the probability of our sequence with respect to θ:

10∏
i=1

p(Fi = fi | θ) = (1− θ)θ(1− θ)(1− θ)θ(1− θ)(1− θ)(1− θ)θ(1− θ)

= θ3(1− θ)7
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Under our model assumptions (i.i.d.):

p
(
H T H H T H H H T H | θ

)
= θ3(1− θ)7

This can be interpreted as a function f (θ). We want to find the maxima
(maximum likelihood) of this function.

High-school math! Take the derivative df /dθ, set it to 0, and solve for θ.
Check these critical points by inserting them into the second derivative.

In principle, this is easy. But the second derivative of f (θ) is already ugly.

Luckily, monotonic functions preserve critical points.

log f (θ) has the same maxima as f (θ)!
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Maximum Likelihood Estimation (MLE) for any coin sequence?

θMLE = |T |
|T |+|H |

|T |, |H | denote number of T , H , respectively.

This justifies 30% as a reasonable answer to our initial question.
Problem solved?!
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Just for fun, a totally different sequence (same coin!):

H H

θMLE = 0.

But even a fair coin has 25% chance of showing this result!

We have prior beliefs that have nothing to do with math. Is there any
chance to incorporate them?
Yes: Make the parameter itself a random variable.

9 / 24



For any x , we want to be able to express p(θ = x | D), where D is a
random variable that models the observed sequence at hand (D = Data).

Because we are talking about coin flips, we know that p(θ = x | D) only
makes sense for x ∈ [0, 1].
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By Bayes’ rule:

p(θ = x | D) =
p(D | θ = x ) · p(θ = x )

p(D)

The numerator consists of:

I p(D | θ = x ): We know this one from MLE, now with a fixed θ = x !
It is called likelihood.

I p(θ = x ): Our prior belief in the value of θ before observing data.
It is called the prior.

(The denominator p(D), called evidence, is not so important in our case.)

We call p(θ = x | D) the posterior (distribution)—the counterpart of the
prior, i.e., our belief in the value of θ after observing data.

Prior, likelihood and posterior.
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How should we choose the prior p(θ = x )? There are no observations, so
there are no assumptions/constraints/. . . , except that

∫
p(θ = x ) dx = 1

(
or shorter:

∫
p(θ) dθ = 1

)
has to hold on the support (i.e., feasible values) of θ.

This leaves room for (possibly subjective) model choices!
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Some possible choices for the prior on θ:
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Often, you choose the prior to make subsequent calculations easier.

Beta(θ | a, b) =
Γ(a + b)

Γ(a)Γ(b)
θa−1(1− θ)b−1, θ ∈ [0, 1]

Decode!

I We have seen this part before: θa−1(1− θ)b−1

I Γ(n) = (n − 1)!, if n ∈ N

The fact that we have seen this before in parts is not a coincidence.
We have chosen a conjugate prior, in this case the Beta distribution,
that eases further computation.

In the MLE section, we had a similar functional form, but (a − 1) and
(b − 1) were substituted by the number of T and H , respectively!

Interpretation: a − 1 and b − 1 are the numbers of T and H we think
we would see, if we made a + b − 2 many coin flips.

14 / 24



The Beta pdf for different choices of a and b:
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Let us plug all we know into Bayes’ Theorem:

p(θ = x | D) =
p(D | θ = x ) · p(θ = x )

p(D)

We know

p(D | θ = x ) = x |T |(1− x )|H |,

p(θ = x ) ≡ p(θ = x | a, b) =
Γ(a + b)

Γ(a)Γ(b)
xa−1(1− x )b−1.

So we get:

p(θ = x | D) =
1

p(D)
· x |T |(1− x )|H | · Γ(a + b)

Γ(a)Γ(b)
xa−1(1− x )b−1

∝ x |T |+a−1(1− x )|H |+b−1,

because p(D) is constant w.r.t. x .
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p(θ = x | D) ∝ x |T |+a−1(1− x )|H |+b−1

How do we find the multiplicative constant that turns “∝” into “=”?

We have one more constraint:
∫
p(θ | D)dθ = 1.

The right-hand side is proportional to a Beta pdf, which integrates to 1.

Consequently (by reverse-engineering), the posterior must also be
Beta-distributed and the only constant that works is

Γ(|H |+ |T |+ a + b)

Γ(|T |+ a)Γ(|H |+ b)
.

Always remember this trick when you try to solve integrals that
involve known pdfs (up to a constant factor)!
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We now know that

p(θ = x | D) = Beta(x | a + |T |, b + |H |),

and we can find the maximum θMAP with the same algebra as in the
MLE case:

θMAP =
|T |+ a − 1

|H |+ |T |+ a + b − 2

Under our prior belief and after seeing the (i.i.d.) data, θMAP is the best
guess for θ.

It is called the maximum a posteriori estimate. (MAP)

Nota bene: Remember that monotonic functions preserve critical points.
Multiplication with a constant (6= 0) is monotonic. For obtaining the
minimum, it was not necessary to calculate the normalizing constant.
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Is that it? No... We can go even deeper!

The probability that the next coin flip is T , given observations D and
prior belief a, b:

p
(
F = T | D, a, b

)
A flip depends on θ, but we don’t know what specific value for θ we
should use. So integrate over all possible values of θ!

p
(
F = T | D, a, b

)
=

∫ 1

0

p
(
F = T , θ | D, a, b

)
dθ

How is this different from before? We use all possibilities, weighted by
the prior, at the same time rather than just the ML or MAP estimate.

We call this a (fully) Bayesian analysis, because rather than opti-
mising out parameters, we integrate them out, i.e., we incorporate
the full Bayesian structure of our model.
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To calculate the integral from the previous slide, we rewrite the coin flip
(Bernoulli) density:

p(F = f | θ) = p(f | θ) = θf (1− θ)1−f

(Here, f is boolean with values 1 for tails and 0 for heads.)

p(f | D, a, b) =

∫ 1

0

p(f , θ | D, a, b) dθ =

∫ 1

0

p(f | θ)p(θ | D, a, b) dθ

Product Rule + conditional independence assumption!
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Continue by plugging in all formulae we get∫ 1

0

p(f | θ)p(θ | D, a, b) dθ

=

∫ 1

0

θf (1− θ)1−f Γ(|T |+ a + |H |+ b)

Γ(|T |+ a)Γ(|H |+ b)
θ|T |+a−1(1− θ)|H |+b−1 dθ

=
Γ(|T |+ a + |H |+ b)

Γ(|T |+ a)Γ(|H |+ b)

∫ 1

0

θf+|T |+a−1(1− θ)|H |+b−f dθ

=
Γ(|T |+ a + |H |+ b)

Γ(|T |+ a)Γ(|H |+ b)

Γ(f + |T |+ a)Γ(|H |+ b − f + 1)

Γ(|T |+ a + |H |+ b + 1)
.

Is that it? No... We can go even deeper!
We could put a hyperprior on the parameters a and b. But not now...
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How many flips?

For MLE we had

θMLE =
|T |

|T |+ |H |
.

Clearly, we get the same result for |T | = 1, |H | = 4 and
|T | = 10, |H | = 40. Which one is better? Why?

Hoeffding’s Inequality for a sampling complexity bound:

p(|θMLE − θ| ≥ ε) ≤ 2e−2Nε2 ,

where N = |T |+ |H |.
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Application: German Tank Problem

During WWII, the allies needed to estimate the number of tanks being
produced by Germany.

Data? Serial numbers from parts of destroyed tanks.

Month Bayesian est. Intelligence est. German records
June 40 169 1000 122
June 41 244 1550 271
August 42 327 1550 342

Source (and elaborate analysis):
https://en.wikipedia.org/wiki/German_tank_problem
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What we learned

I Maximum likelihood

I Maximum a posteriori

I Fully Bayesian analysis

I Prior, Posterior, Likelihood

I The i.i.d. assumption

I Conjugate prior

I Monotonic transforms for optimisation.

I Solving integrals by reverse-engineering densities.
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