k-Nearest Neighbors

Wiebke Köpp

Technische Universität München

Reading Material:
"Machine Learning: A Probabilistic Perspective" by Murphy [ch. 1.4.1-1.4.3]
Further extra reading:
"Bayesian Reasoning and Machine Learning" by Barber [ch. 14]

Note: These slides are adapted from slides originally by Daniala Korhammer

The data from last time

How do we intuitively label new samples by hand?
Look at the surrounding points.

1-NN Algorithm

- define a distance measure (e.g. Euclidean distance)
- compute the nearest neighbor for all new data points
- and label them with the label of their nearest neighbor

This works for both classification and regression.

$1-\mathrm{NN}$

This corresponds to a Voronoi tesselation.
And results in overfitting...

k-Nearest Neighbor Classification

More robust against errors in the training set:
Look at a number of neighbors!
Let $\mathcal{N}_{k}(\boldsymbol{x})$ be the k nearest neighbors of a vector \boldsymbol{x}, then in classification tasks:

$$
\begin{gathered}
p(z=c \mid \boldsymbol{x}, k)=\frac{1}{k} \sum_{i \in \mathcal{N}_{k}(\boldsymbol{x})} \mathbb{I}\left(z_{i}=c\right), \\
y=\arg \max p(z=c \mid \boldsymbol{x}, k)
\end{gathered}
$$

with the indicator variable $\mathbb{I}(e)$ is defined as:

$$
\mathbb{I}(e)=\left\{\begin{array}{l}
1 \text { if } e \text { is true } \\
0 \text { if } e \text { is false }
\end{array}\right.
$$

i.e., the vector will be labeled by the mode of its neighbors' labels.

k-Nearest-Neighbor Regression

Regression is similar:
Let $\mathcal{N}_{k}(\boldsymbol{x})$ be the k nearest neighbors of a vector \boldsymbol{x}, then for regression:

$$
y=\frac{1}{\mathcal{C}} \sum_{i \in \mathcal{N}_{k}(\boldsymbol{x})} \frac{1}{\mathrm{~d}\left(\boldsymbol{x}, \boldsymbol{x}_{\boldsymbol{i}}\right)} z_{i},
$$

with $\mathcal{C}=\sum_{i \in \mathcal{N}_{k}(x)} \frac{1}{\mathrm{~d}\left(\boldsymbol{x}, \boldsymbol{x}_{i}\right)}$ the normalization constant and $\mathrm{d}\left(\boldsymbol{x}, \boldsymbol{x}_{i}\right)$ being a distance measure between x and x_{i},
i.e., the vector will be labeled by a weighted mean of its neighbors' values.

3-NN

So, how many neighbors are best?

Determining k

k is called a hyper-parameter.
Keep part of your training set separate and evaluate the algorithm with different k on this validation set to choose the best.

Training set \mathcal{D}_{T}	Validation set \mathcal{D}_{V}

Training set	Test set \mathcal{D}_{t}

D
Better even: Do cross-validation!

K-fold Cross-Validation

$\mathcal{D}_{T_{1}}$		
$\mathcal{D}_{V_{1}}$		
$\mathcal{D}_{T_{2}}$	$\mathcal{D}_{V_{2}}$	
$\mathcal{D}_{T_{2}}$		
$\mathcal{D}_{V_{3}}$	$\mathcal{D}_{T_{3}}$	

Training set \mathcal{D}_{T}	Test set \mathcal{D}_{t}
\mathcal{D}	

- Split your training data into K folds (10 -fold CV is common).
- Use $K-1$ folds for training and the remaining for evaluation.
- Average over all folds to get an estimate of the error for a certain setting of your hyper-parameters (such as k in k-NN).
- Try different settings for your hyper-parameters.
- Use all your training data and the best hyper-parameters for final training (and testing) of your model.

The extreme case - LOOCV

In leave-one-out-cross validation (LOOCV) we train on all but one sample.

If we have N samples, this is the same as N-fold cross-validation.
LOOCV is interesting if we do not have a lot of data and we want to use as much of it for training as possible but still get a good estimate of model performance.

But it also means that we need to train our model N times...
If we have sufficiently large amounts of data and training our model is computationally expensive, we better stick to lower numbers of K or a single validation set.

Cross-validation for determining k

We choose $k=7$.

Distance Measures

- Euclidean distance (L_{2} norm) : $\sqrt{\sum_{i}\left(u_{i}-v_{i}\right)^{2}}$
- L_{1} norm: $\sum_{i}\left|u_{i}-v_{i}\right|$
- L_{∞} norm: $\max _{i}\left|u_{i}-v_{i}\right|$
- Angle:

$$
\cos \alpha=\frac{\boldsymbol{u}^{T} \boldsymbol{v}}{\|\boldsymbol{u}\|\|\boldsymbol{v}\|}
$$

- Mahalanobis distance ($\mathbf{\Sigma}$ is positive (semi) definite and symmetric):

$$
\sqrt{(\boldsymbol{u}-\boldsymbol{v})^{T} \boldsymbol{\Sigma}^{-1}(\boldsymbol{u}-\boldsymbol{v})}
$$

- Hamming distance, Edit distance, ...

Scaling Issues

The same old example but one of our features is in the order of meters, the other in the order of centimeters. $(k=1)$

Circumventing Scaling Issues

- Data standardization Scale each feature to zero mean and unit variance.

$$
x_{i, \mathrm{std}}=\frac{x_{i}-\mu_{i}}{\sigma_{i}}
$$

(This is a standard procedure in machine learning. Many models are sensitive to differences in scale.)

- Use the Mahalanobis distance.

$$
\begin{array}{r}
\text { mahalanobis }\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right)=\sqrt{\left(\boldsymbol{x}_{1}-\boldsymbol{x}_{2}\right)^{T} \boldsymbol{\Sigma}^{-1}\left(\boldsymbol{x}_{1}-\boldsymbol{x}_{2}\right)} \\
\text { If } \boldsymbol{\Sigma}=\left[\begin{array}{ccc}
\sigma_{1}^{2} & 0 & 0 \\
0 & \cdots & 0 \\
0 & 0 & \sigma_{n}^{2}
\end{array}\right] \text {, this is equal to normalized Euclidean distance }
\end{array}
$$

The curse of dimensionality

Say, you have a discrete one-dimensional input space $x \in\{1,2, \ldots, 10\}$. Your data is uniformly distributed over this space.

You have $N=20$ samples and your data covers 100% of the input space.

Add a second dimension (now $\boldsymbol{x} \in\{1, \ldots, 10\}^{2}$) and your data only covers 18% of the input space.

Once you add a third dimension you only cover 2%. The nearest neighbor will now be pretty far away..
N has to grow exponentially with the number of features. Consider this when using k-NN on high-dimensional data.

A probabilistic interpretation of k-NN

Assumption: Data points are distributed normally.
A generative model for data from class c :

$$
\begin{aligned}
p(\boldsymbol{x} \mid z=c) & =\frac{1}{N_{c}} \sum_{\boldsymbol{x}_{n} \in \text { class } c} \mathcal{N}\left(\boldsymbol{x} \mid \boldsymbol{x}_{n}, \sigma^{2} \boldsymbol{I}\right) \\
& =\frac{1}{N_{c}} \frac{1}{\left(2 \pi \sigma^{2}\right)^{D / 2}} \sum_{\boldsymbol{x}_{n} \in \text { class } c} e^{-\frac{\left\|\boldsymbol{x}-\boldsymbol{x}_{n}\right\|^{2}}{\left(2 \sigma^{2}\right)}}
\end{aligned}
$$

where D is the dimension of the data points, N_{c} is the number of training points in class c.

Generative models for classes red, blue and green

A probabilistic interpretation of k-NN

A Parzen density estimator: Uniform weighted sum of Gaussian distributions centered on the training points.

Bayes' rule helps with a new data point x^{*} :

$$
\begin{aligned}
& p\left(z=c \mid \boldsymbol{x}^{*}\right)=\frac{p\left(\boldsymbol{x}^{*} \mid z=c\right) p(z=c)}{\sum_{i \in C} p\left(\boldsymbol{x}^{*} \mid z=i\right) p(z=i)} \\
& p\left(z=c \mid \boldsymbol{x}^{*}\right) \propto p\left(\boldsymbol{x}^{*} \mid z=c\right) p(z=c)
\end{aligned}
$$

Neighborhood Component Analysis - NCA

Instead of defining the distance metric for k-NN, we can also learn it! We want to find a good Q for the (squared) Mahalanobis distance:

$$
\operatorname{mahalanobis}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right)=\left(\boldsymbol{x}_{1}-\boldsymbol{x}_{2}\right)^{T} \boldsymbol{Q}\left(\boldsymbol{x}_{1}-\boldsymbol{x}_{2}\right)
$$

For any such Q we can find \boldsymbol{A}, such that $\boldsymbol{Q}=\boldsymbol{A}^{T} \boldsymbol{A}$, so we can rewrite the distance as:

$$
\operatorname{mahalanobis}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right)=\left(\boldsymbol{A} \boldsymbol{x}_{1}-\boldsymbol{A} \boldsymbol{x}_{2}\right)^{T}\left(\boldsymbol{A} \boldsymbol{x}_{1}-\boldsymbol{A} \boldsymbol{x}_{2}\right)
$$

J. Goldberger, S. Roweis, G. Hinton, R. Salakhutdinov. Neighborhood Component Analysis. 2005.

NCA - a good metric

How do we define good?
\boldsymbol{A} should be chosen in such a way that when we take one exemplar from the training set and try to classify it based on the remaining training set, it should be classified into its known category. And this should hold for all exemplars in the training set (Leave One Out Cross Validation-LOOCV).

But an infinitesimal change in A can effect the classification performance by a finite amount.

NCA - the probabilistic perspective

A better-behaving performance measure (still based on LOOCV): Don't assign classes directly but use probabilities instead.

$$
p_{i j}=\frac{\exp \left(-\left\|\boldsymbol{A} \boldsymbol{x}_{i}-\boldsymbol{A} \boldsymbol{x}_{j}\right\|^{2}\right)}{\sum_{k \neq i} \exp \left(-\left\|\boldsymbol{A} \boldsymbol{x}_{i}-\boldsymbol{A} \boldsymbol{x}_{k}\right\|^{2}\right)}, \quad p_{i i}=0
$$

Each training point i selects another point j as its neighbor with some probability $p_{i j}$.

We compute the probability p_{i} that point i will be correctly classified:

$$
p_{i}=\sum_{j \in C_{i}} p_{i j}, \quad C_{i}=\left\{j \mid c_{i}=c_{j}\right\}
$$

NCA - Finding \boldsymbol{A}

The goal is now to find some \boldsymbol{A} that maximizes the expected number of correctly classified points:

$$
f(\boldsymbol{A})=\sum_{i} \sum_{j \in C_{i}} p_{i j}=\sum_{i} p_{i}
$$

A function (objective) that depends solely on \boldsymbol{A}. How to maximize it? Follow the gradient until the top (gradient ascent). A gradient with respect to a matrix!

$$
\frac{\partial f}{\partial A}=2 A \sum_{i}\left(p_{i} \sum_{k} p_{i k} \boldsymbol{x}_{i k} \boldsymbol{x}_{i k}^{T}-\sum_{j \in C_{i}} p_{i j} \boldsymbol{x}_{i j} \boldsymbol{x}_{i j}^{T}\right)
$$

with $\boldsymbol{x}_{i j}=\boldsymbol{x}_{i}-\boldsymbol{x}_{j}$.

NCA - Impact of \boldsymbol{A}

The algorithm also learns automatically a real-valued estimate of the optimal number of neighbors: by scaling up A uniformly, the method consults fewer neighbors and vice versa.

By restricting A to be a non-square matrix of size $d \times D$, NCA can also do linear dimensionality reduction (thus, the metric will be of low rank if $d \leq D$).

NCA for dimensionality reduction

NCA on data that was originally 3-D (top left), 13-D (lower left), 560-D (top right, face data) and 256-D (lower right, digits data)

What we learned

- k-NN Algorithm
- Cross-Validation
- Distance Metrics
- Curse of Dimensionality
- Probabilistic k-NN and NCA

