
Decision Trees

Wiebke Köpp

Technische Universität München

Reading Material:

”Machine Learning: A Probabilistic Perspective”by Murphy [ch. 16.2]

Further extra reading:
”Pattern Recognition and Machine Learning”by Bishop [ch. 14.4]

Note: These slides are adapted from slides originally by Daniala Korhammer.
Additionally, some of them are inspired by Understanding Random Forests (Phd thesis
by Gilles Louppes)

1 / 34

https://github.com/glouppe/phd-thesis

The 20-Questions Game

Does it have fur?

Does it bark?

Dog Cat

Does it fly?

Bird Fish

2 / 34

0 2 4 6 8 10

x1

0

1

2

3

4

5

6

x
2

Example: data X with two features x1 and x2 and class labels z
Goal: classification of unseen instances (generalization)

3 / 34

x2 ≤ 3

x2 ≤ 1.7

x1 ≤ 3.7

.

x1 ≤ 1.7

(10, 0, 2) . . .

True

x1 ≤ 7.8

(2, 3, 112) x2 ≤ 3.9

(4, 0, 1) (0, 24, 1)

False

0 2 4 6 8 10

x1

0

1

2

3

4

5

6

x
2

Distribution of classes in leaf: (red, green, blue)

4 / 34

Interpretation of a Decision Tree

. . .

x2 ≤ 3.9

(4, 0, 1) (0, 24, 1)

True False

• Node =̂ feature test → leads to decision boundaries.

• Branch =̂ different outcome of the preceding feature test.

• Leaf =̂ region in the input space and the distribution of samples in
that region.

Decision trees partition the input space into cuboid regions.

5 / 34

To classify a new sample x:

• Test the attributes of x to find the region R that contains it and get
the class distribution nR = (nc1,R, nc2,R, . . . , nck,R) for
C = {c1, . . . , ck}.

• The probability that a data point x ∈ R should be classified
belonging to class c is then:

p(z = c | R) =
nc,R∑

ci∈C
nci,R

• A new unseen sample x is simply given the label which is most
common in its corresponding region:

y = arg max
c

p(z = c | x) = arg max
c

p(z = c | R) = arg max
c

nc,R

6 / 34

. (10, 0, 2) . . .

True

(2, 3, 112)

(4, 0, 1) (0, 24, 1)

False

Classifcation of x = (8.5, 3.5)T

0 2 4 6 8 10

x1

0

1

2

3

4

5

6

x
2

x2 ≤ 3

x2 ≤ 1.7 x1 ≤ 7.8

x2 ≤ 3.9
x1 ≤ 3.7 x1 ≤ 1.7

7 / 34

What does the perfect decision tree look like?
It performs well on new data. → generalization
How can we test this?

Training set DT Test set Dt

D

• Split training data D into a training set DT = (XT , zT) and a test
set Dt = (Xt, zt),

• build tree from training set DT ,

• predict test set labels yt using the tree,

• and compare predictions yt to true labels zt for evaluation.

8 / 34

Idea: Build all possible trees and evaluate how they perform on new data.

All combinations of features and values can serve as tests in the tree:

feature tests

x1 ≤ 0.36457631
≤ 0.50120369
≤ 0.54139549
≤ . . .

x2 ≤ 0.09652214
≤ 0.20923062
≤ . . .

xk

xk+1

In our simple example:
2 features × 300 unique values per feature
2 features × 299 possible thresholds per feature:
598 possible tests at the root node, slightly fewer at each descendant

9 / 34

Iterating over all possible trees is possible only for very small examples
(→ low number of possible tests) because the number of trees quickly
explodes.

Finding the optimal tree is NP-complete.

Instead: Grow the tree top-down and choose the best split node-by-node
using a greedy heuristic on the training data.

10 / 34

For example: Split the node when it improves the missclassification rate
iE at node t

iE(t) = 1−max
c

p(z = c | t)

The improvement when performing a split s of t into tR and tL for
i(t) = iE(t) is given by

∆i(s, t) = i(t)− pLi(tL)− pRi(tR)

t

tL
tR

i(t) = 1− 0.5 = 0.5

i(tL) = 0 i(tR) = 0.33

0 2 4 6 8 10

x1

0
1
2
3
4
5
6

x
2

50
150

100

11 / 34

0 2 4 6 8 10

x1

0
1
2
3
4
5
6

x
2

4060

6040
no split: 40

200

x1 ≤ 5 40
200

x2 ≤ 3 40
200

Node is not split even though combining the two tests would result in
perfect classification

Use a criterion i(t) that measures how pure the class distribution at a
node t is. It should be

• maximum if classes are equally distributed in the node

• minimum, usually 0, if the node is pure

• symmetric

12 / 34

Impurity measures

With πc = p(z = c | t):

Misclassification rate:

iE(t) = 1−max
c

πc

Entropy:

iH(t) = −
∑
ci∈C

πci log πci

(Note that lim
x→0+

x log x=0.)

Gini index:

iG(t) =
∑
ci∈C

πci(1− πci)

= 1−
∑
ci∈C

π2
ci

For C = {c1, c2}:

0.0 0.2 0.4 0.6 0.8 1.0

p(c1 | t) = 1− p(c2 | t)

0.0

0.2

0.4

0.6

0.8

1.0 iE(t)

iH (t)

iG(t)

13 / 34

Detour: Information Theory

Information theory is about encoding and transmitting information

We would like to encode four messages:

• m1 = “You have a lecture.” p(m1) = 0.01 → Code 111

• m2 = “You have an exam.” p(m2) = 0.02 → Code 110

• m3 = “There is free beer.” p(m3) = 0.30 → Code 10

• m4 = “Nothing happening.” p(m4) = 0.67 → Code 0

The code above is called a Huffman Code.

On average:

0.01× 3 bits + 0.02× 3 bits + 0.3× 2 bits + 0.67× 1bit = 1.36 bits

14 / 34

Shannon Entropy

Shannon entropy gives a lower bound on the average number of bits
needed to encode a set of messages.

It is defined over a discrete random variable X with possible values
{x1, . . . , xn}

H(X) = −
n∑
i

p(X = xi) log2 p(X = xi)

H(X) measures the uncertainty about the outcome of X.

15 / 34

Building a decision tree

Compare all possible tests and choose the one where the improvement
∆i(s, t) for some splitting criterion i(t) is largest

iG(t) = 1−
(

67

300

)2

−
(

65

300

)2

−
(
168

300

)2

≈ 0.5896

After testing x2 ≤ 3:

iG(tL) ≈ 0.6548 and iG(tR) ≈ 0.3632

x2 ≤ 3

t

tL
tR

6765

168

⇒ ∆iG(x2 ≤ 3, t) = iG(t)− 153

300
iG(tL)− 147

300
iG(tR)

≈ 0.07768

16 / 34

0 2 4 6 8

x1

0

1

2

3

4

5

x
2

0.00

0.03

0.06
∆
i G

(x
1
,D

)

0.00 0.06

∆iG(x2,D)

17 / 34

Decision boundaries at depth 1

0 2 4 6 8 10

x1

0

1

2

3

4

5

6
x

2

Accuracy on the whole data set: 58.3%

18 / 34

Decision boundaries at depth 2

0 2 4 6 8 10

x1

0

1

2

3

4

5

6
x

2

Accuracy on the whole data set: 77%

19 / 34

Decision boundaries at depth 3

0 2 4 6 8 10

x1

0

1

2

3

4

5

6
x

2

Accuracy on the whole data set: 84.3%

20 / 34

Decision boundaries at depth 4

0 2 4 6 8 10

x1

0

1

2

3

4

5

6
x

2

Accuracy on the whole data set: 90.3%

21 / 34

Decision boundaries of a maximally pure tree

0 2 4 6 8 10

x1

0

1

2

3

4

5

6
x

2

Accuracy on the whole data set: 100% → generalisation?

22 / 34

Overfitting

Overfitting typically occurs when we try to model the training data
perfectly.

Overfitting means poor generalisation! How can we spot overfitting?

• low training error, possibly 0

• testing error is comparably high.

23 / 34

5 10 15 20 25 30

Number of leaf nodes

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

ur
ac

y

Overfitting

Underfitting Train
Test

The training performance monotonically increases with every split.

The test performance tells us how well our model generalises, not the
training performance! → validation set

24 / 34

When to stop growing?

Possible stopping (or pre-pruning) criteria:

• distribution in branch is pure, i.e i(t) = 0

• maximum depth reached

• number of samples in each branch below certain threshold tn

• benefit of splitting is below certain threshold ∆i(s, t) < t∆

Or we can grow a tree maximally and then (post-)prune it.

25 / 34

Creating the validation set

Training set DT Validation set DV

Training set Test set Dt

D

Be sure to have separate training, validation and test sets:

• training set DT to build the tree,

• validation set DV to prune the tree,

• test set Dt to evaluate the final model.

Splits of (2
3 ,

1
3) are common.

Test data for later evaluation should not be used for pruning or you will
not get an honest estimate of the model’s performance!

26 / 34

Reduced Error Pruning

Let T be our decision tree and t one of its inner nodes.

Pruning T w.r.t. t means deleting all descendant nodes of t (but not t
itself). We denote the pruned tree T\Tt.

T
t

t

t

t t

t

t

t t

Tt
t

t

t t

t

T\Tt
t

t t

t t

• Use validation set to get an error estimate: errDV
(T).

• For each node t calculate errDV
(T\Tt)

• Prune tree at the node that yields the highest error reduction.

• Repeat until for all nodes t: errDV
(T) < errDV

(T\Tt).

After pruning you may use both training and validation data to update the labels at each leaf.

27 / 34

Random Forests

Train not only one decision tree but an army of them,
also called an ensemble.

To label a new data point, evaluate all trees and let them vote. Label the
data point with the most “popular” class.

But. . . if we build all trees in the same way they will always vote in
unison?

→ We need to introduce variance between the trees!

28 / 34

Random Forests: Introducing Variance

Let N denote the number of samples in the training set DT and
D denote the number of features (attributes, dimensions).

• Instead of using the whole training set to build the tree, we build
each tree Ti from a bootstrap sample:
From DT create DTi

by randomly drawing N samples with
replacement.
By sampling with replacement we only use ≈ 63.2 % of DT for each tree.

• Build decision trees Ti top-down with a greedy heuristic and a small
variation:
At each node, instead of picking the best of all possible tests,
randomly select a subset of d < D features and consider only tests
on these features.

• There is no need for pruning.

29 / 34

Random Forests: Setting the hyper parameter d

Choosing a small d creates variance between the trees, but if we choose d
too small, we will build random trees with poor split choices and little
individual predictive power.

Choosing d too large will create an army of very similar trees, such that
there is hardly any advantage over a single tree.

The answer is somewhere in between!

30 / 34

Decision surface for a random forest of 1000 trees

0 2 4 6 8 10

x1

0

1

2

3

4

5

6
x

2

31 / 34

Decision Trees with Categorical Teatures

Day Outlook Temperature Humidity Wind Play Tennis?

D1 sunny hot high weak No
D2 sunny hot high strong No
. . .

Outlook = overcast?

Yes Temperature = hot?

No Wind = weak?

.

Different algorithm variants (ID3, C4.5, CART) handle these things
differently.

32 / 34

Decision Trees for Regression

For regression (if zi is a real value rather than a class):

• At the leaves compute the mean (instead of the mode) over the
outputs.

• Use the mean-squared-error as splitting heuristic.

0 1 2 3 4 5

x

−2.0
−1.5
−1.0
−0.5

0.0
0.5
1.0
1.5
2.0
2.5

z

depth: 2
depth: 5
data

33 / 34

What we learned

• Interpretation and Building of Decision Trees

• Impurity functions / Splitting heuristics

• Training / Test / Validation Set

• Overfitting

• Random forests

34 / 34

	Definition
	Building the tree
	Impurity measures
	Stopping to build the tree
	Random forests
	Decision tree variants and summary

