Probability Theory

Maximilian Soelch

Technische Universität München

Probability Theory

Probability Theory is the study of uncertainty. Uncertainty is all around us.

Mathematical probability theory is based on measure theory-we do not work at this level.

Slides are mostly based on Review of Probability Theory by Arian Meleki and Tom Do.

Probability Theory

The basic problem that we study in probability theory:
Given a data generating process, what are the properties of the outcomes?

The basic problem of statistics (or better statistical inference) is the inverse of probability theory:

Given the outcomes, what can we say about the process that generated the data?

Statistics uses the formal language of probability theory.

Basic Elements of Probability

Sample space Ω :

The set of all outcomes of a random experiment.

$$
\begin{array}{r}
\text { e.g. rolling a die: } \Omega=\{1,2,3,4,5,6\} \\
\text { e.g. rolling a die twice: } \Omega^{\prime}=\Omega \times \Omega=\{(1,1),(1,2), \ldots,(6,6)\}
\end{array}
$$

Set of events \mathcal{F} (event space):
A set whose elements $A \in \mathcal{F}$ (events) are subsets of Ω. \mathcal{F} (σ-field) must satisfy

- $\emptyset \in \mathcal{F}$,
- $A \in \mathcal{F} \Rightarrow \Omega \backslash A \in \mathcal{F}$,
- $A_{1}, A_{2}, \ldots \in \mathcal{F} \Rightarrow \cup_{i} A_{i} \in \mathcal{F}$.
e.g. "die outcome is even" \rightsquigarrow event $A=\{\omega \in \Omega: \omega$ even $\}=\{2,4,6\}$
e.g. (smallest) σ-field that contains $A: \mathcal{F}=\{\emptyset,\{1,3,5\},\{2,4,6\},\{1,2,3,4,5,6\}\}$

Basic Elements of Probability ctd.

Probability measure $\mathrm{P}: \mathcal{F} \rightarrow[0,1]$
with Axioms of Probability:

- $\mathrm{P}(A) \geq 0$ for all $A \in \mathcal{F}$,
- $\mathrm{P}(\Omega)=1$,
- If A_{1}, A_{2}, \ldots are disjoint events $\left(A_{i} \cap A_{j}=\emptyset, i \neq j\right)$ then

$$
\mathrm{P}\left(\cup_{i} A_{i}\right)=\sum_{i} \mathrm{P}\left(A_{i}\right) .
$$

e.g. for rolling a die $\mathrm{P}(A)=\frac{|A|}{|\Omega|}$

The triple $(\Omega, \mathcal{F}, \mathrm{P})$ is called a probability space.

Important Properties

The three axioms from the previous slide suffice to show:

- If $A \subseteq B \Rightarrow \mathrm{P}(A) \leq \mathrm{P}(B)$
- $\mathrm{P}(A \cap B)(\equiv \mathrm{P}(A, B)) \leq \min (\mathrm{P}(A), \mathrm{P}(B))$
- $\mathrm{P}(A \cup B) \leq \mathrm{P}(A)+\mathrm{P}(B)$
- $\mathrm{P}(\Omega \backslash A)=1-\mathrm{P}(A)$
- If $A_{1}, A_{2}, \ldots, A_{k}$ are sets of disjoint events such that $\cup_{i} A_{i}=\Omega$ then $\sum_{k} \mathrm{P}\left(A_{k}\right)=1$ (Law of total probability).

Conditional Probability

Let $A, B \subseteq \Omega$ be two events with $\mathrm{P}(B) \neq 0$, then:

$$
\mathrm{P}(A \mid B):=\frac{\mathrm{P}(A \cap B)}{\mathrm{P}(B)} .
$$

$\mathrm{P}(A \mid B)$ is the probability of A conditioned on B and represents the probability of A, if it is known that B was observed.

Multiplication law

Let A_{1}, \ldots, A_{n} be events with $\mathrm{P}\left(A_{1} \cap \ldots \cap A_{n}\right) \neq 0$. Then:

$$
\begin{aligned}
& \mathrm{P}\left(A_{1} \cap \ldots \cap A_{n}\right)=\prod_{i=1}^{n} \mathrm{P}\left(A_{i} \mid \bigcap_{j<i} A_{j}\right) \\
= & \mathrm{P}\left(A_{1}\right) \cdot \mathrm{P}\left(A_{2} \mid A_{1}\right) \cdot \mathrm{P}\left(A_{3} \mid A_{1} \cap A_{2}\right) \cdot \ldots \cdot \mathrm{P}\left(A_{n} \mid A_{1} \cap \ldots \cap A_{n-1}\right) .
\end{aligned}
$$

Law of total probability (revisited)

Let B be an event and Φ a partition of Ω with $\mathrm{P}(A)>0$ for all $A \in \Phi$. Then:

$$
\mathrm{P}(B)=\sum_{A \in \Phi} \mathrm{P}(B \cap A)=\sum_{A \in \Phi} \mathrm{P}(A) \cdot \mathrm{P}(B \mid A)
$$

Graphical representation for a 5-partition $\Phi=\left\{A_{1}, \ldots, A_{5}\right\}$ of Ω :

Bayes' rule

Let A and B be two events with $\mathrm{P}(A), \mathrm{P}(B) \neq 0$. Then:

$$
\mathrm{P}(A \mid B)=\frac{\mathrm{P}(B \mid A) \cdot \mathrm{P}(A)}{\mathrm{P}(B)}
$$

Bayes' rule applies the multiplication rule twice to set $\mathrm{P}(A \mid B)$ and $\mathrm{P}(B \mid A)$ in relation:

$$
\mathrm{P}(B \mid A) \cdot \mathrm{P}(A)=\underbrace{\mathrm{P}(A \cap B)}_{=\mathrm{P}(A, B)}=\mathrm{P}(A \mid B) \cdot \mathrm{P}(B) .
$$

Bayes' rule is always used if the conditional probability $\mathrm{P}(A \mid B)$ is easy to calculate or given, but the conditional probability $\mathrm{P}(B \mid A)$ is searched for.

Independence

Two events A, B are called independent if and only if

$$
\mathrm{P}(A, B)=\mathrm{P}(A) \mathrm{P}(B),
$$

or equivalently $\mathrm{P}(A \mid B)=\mathrm{P}(A)$. What does that mean in words?

Two events A, B are called conditionally independent given a third event C if and only if

$$
\mathrm{P}(A, B \mid C)=\mathrm{P}(A \mid C) \mathrm{P}(B \mid C)
$$

Random variables

We are usually only interested in some aspects of a random experiment.
Random variable $X: \Omega \rightarrow \mathbb{R}$ (actually not every function is allowed...).
A random variable is usually just denoted by an upper case letter X (instead of $X(\omega)$). The value a random variable may take is denoted by the corresponding lower-case letter.

For a discrete random variable

$$
\mathrm{P}(X=x):=\mathrm{P}(\{\omega \in \Omega: X(\omega)=x\}) .
$$

For a continuous random variable

$$
\mathrm{P}(a \leq X \leq b):=\mathrm{P}(\{\omega \in \Omega: a \leq X(\omega) \leq b\}) .
$$

Note the usage of P here.

Cumulative distribution function - CDF

A probability measure P is specified by a cumulative distribution function (CDF), a function $F_{X}: \mathbb{R} \rightarrow[0,1]:$

$$
F_{X}(x) \equiv \mathrm{P}(X \leq x) .
$$

Properties:

- $0 \leq F_{X}(x) \leq 1$
- $\lim _{x \rightarrow-\infty} F_{X}(x)=0$
- $\lim _{x \rightarrow \infty} F_{X}(x)=1$
- $x \leq y \rightarrow F_{X}(x) \leq F_{X}(y)$

Let X have CDF F_{X} and Y have CDF F_{Y}. If $F_{X}(x)=F_{Y}(x)$ for all x, then $\mathrm{P}(X \in A)=\mathrm{P}(Y \in A)$ for all (measurable) A.
We call X and Y identically distributed (or equal in distribution).

Probability density function-PDF

For some continuous random variables, the CDF $F_{X}(x)$ is continuous on \mathbb{R}. The probability density function is then defined as the piecewise derivative

$$
f_{X}(x)=\frac{\mathrm{d} F_{X}(x)}{\mathrm{d} x}
$$

and X is called continuous.

$$
\mathrm{P}(x \leq X \leq x+\Delta x) \approx f_{X}(x) \cdot \Delta x
$$

Properties:

- $f_{X}(x) \geq 0$
- $\int_{x \in A} f_{X}(x) \mathrm{d} x=\mathrm{P}(X \in A)$
- $\int_{-\infty}^{\infty} f_{X}(x) \mathrm{d} x=1$

Probability mass function-PMF

X takes on only a countable set of possible values (discrete random variable).

A probability mass function $p_{X}: \Omega \rightarrow[0,1]$ is a simple way to represent the probability measure associated with X :

$$
p_{X}(x)=\mathrm{P}(X=x)
$$

(Note: We use the probability measure P on the random variable X)

Properties:

- $0 \leq p_{X}(x) \leq 1$
- $\sum_{x} p_{X}(x)=1$
- $\sum_{x \in A} p_{X}(x)=\mathrm{P}(X \in A)$

Transformation of Random Variables

Given a (continuous) random variable X and a strictly monotonic (increasing or decreasing) function s, what can we say about $Y=s(X)$?

$$
f_{Y}(y)=f_{X}(t(y))\left|t^{\prime}(y)\right|,
$$

where t is the inverse of s.

Expectation

For any measurable function $g: \mathbb{R} \rightarrow \mathbb{R}$, we define the expected value:

$$
\begin{array}{rlr}
\mathrm{E}[g(X)] & =\sum_{x} g(x) p_{X}(x) & \text { discrete } \\
\mathrm{E}[g(X)] & =\int_{-\infty}^{\infty} g(x) f_{X}(x) \mathrm{d} x & \text { continuous }
\end{array}
$$

Special case: $\mathrm{E}[X]$, i.e., $g(x)=x$, is called the mean of X.
Properties:

- $\mathrm{E}[a]=a$ for any constant $a \in \mathbb{R}$
- $\mathrm{E}[a f(X)]=a \mathrm{E}[f(X)]$ for any constant $a \in \mathbb{R}$
- $\mathrm{E}[f(X)+g(X)]=\mathrm{E}[f(X)]+\mathrm{E}[g(X)]$

For any $A \in \mathbb{R}: \mathrm{E}\left[\mathbb{I}_{A}(X)\right]=P(X \in A)$

Variance and Standard Deviation

Variance measures the concentration of a random variable's distribution around its mean.

$$
\operatorname{Var}(X)=\mathrm{E}\left[(X-\mathrm{E}[X])^{2}\right]=\mathrm{E}\left[X^{2}\right]-\mathrm{E}[X]^{2} .
$$

Properties:

- $\operatorname{Var}(a)=0$ for any constant $a \in \mathbb{R}$.
- $\operatorname{Var}(a f(X))=a^{2} \operatorname{Var}(f(X))$ for any constant $a \in \mathbb{R}$.
$\sigma(X)=\sqrt{\operatorname{Var}(X)}$ is called the standard deviation of X.

Entropy

The Shannon entropy or just entropy of a discrete random variable X is

$$
H[X] \equiv-\sum_{x} \mathrm{P}(X=x) \log \mathrm{P}(X=x)=-\mathrm{E}[\log \mathrm{P}(X)]
$$

Given two probability mass fuctions p_{1} and p_{2}, the Kullback-Leibler divergence (or relative entropy) between p_{1} and p_{2} is

$$
\mathrm{KL}\left(p_{1} \| p_{2}\right) \equiv-\sum_{x} p_{1}(x) \log \frac{p_{2}(x)}{p_{1}(x)}
$$

Note that the KL divergence is not symmetric.

Bernoulli distribution

A Bernoulli-distributed random variable $X \sim \operatorname{Ber}(\mu), \mu \in[0,1]$ models the outcome of an experiment. It is positive with a probability of μ and negative with a probability of $1-\mu$.

$$
p_{X}(x)= \begin{cases}\mu, & \text { if } x=1 \\ 1-\mu, & \text { if } x=0 \\ 0 & \text { else }\end{cases}
$$

For calculations the following equation is more useful:

$$
\operatorname{Ber}(x \mid \mu)=\mu^{x} \cdot(1-\mu)^{1-x}
$$

Binomial distribution

A Binomial random variable $X \sim \operatorname{Bin}(N, \mu), N \geq 1, \mu \in[0,1]$ shows the number of successes by performing N trials, where each trial is independent from the others. The success probability is μ.

For $x \in\{0,1, \ldots, N\}$:
$\operatorname{Bin}(x \mid N, \mu)=\binom{N}{x} \cdot \mu^{x} \cdot(1-\mu)^{N-x}$

Poisson distribution

A Binomial random variable with large N and small μ can be approximated by a Poisson random variable $X \sim \operatorname{Poi}(\lambda)$.

For $\lambda=N \mu$ and as $N \rightarrow \infty$:

$$
X \sim \operatorname{Bin}(N, \mu) \rightarrow X \sim \operatorname{Poi}(\lambda)
$$

For $x \in \mathbb{N}_{0}$:

$$
\operatorname{Poi}(x \mid \lambda)=\frac{e^{-\lambda} \cdot \lambda^{x}}{x!}
$$

Uniform distribution

A uniformly distributed random variable $X \sim \mathrm{U}(\mathrm{a}, \mathrm{b}), a, b \in \mathbb{R}$, $a<b$, takes any value on the interval $[a, b]$ with equal probability.

For $x \in[a, b]$:

$$
\mathrm{U}(x \mid a, b)=\frac{1}{b-a}
$$

Exponential distribution

An exponentially distributed random variable $X \sim \operatorname{Exp}(\lambda), \lambda>0$ can be referred to as the latency until an event ("success") occurs the first time. λ corresponds to the expected number of successes in one unit of time.

For $x \in \mathbb{R}_{0}^{+}$:

$$
\operatorname{Exp}(x \mid \lambda)=\lambda \cdot e^{-\lambda x}
$$

Normal/Gaussian distribution

A Normal or Gaussian random variable $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right), \mu, \sigma \in \mathbb{R}$, $\sigma>0$ has approximately the same distribution as the sum of many independently, arbitrarily but identically distributed random variables.

For $x \in \mathbb{R}$:

$$
\mathcal{N}\left(x \mid \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi} \sigma} \cdot e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

Beta distribution

Random variables $X \sim \operatorname{Beta}(a, b)$, $a, b>0$, following a Beta distribution can often be seen as the success probability for a binary event.

For $x \in[0,1]$:
$\operatorname{Beta}(x \mid a, b)=\frac{\Gamma(a+b)}{\Gamma(a) \Gamma(b)} x^{a-1}(1-x)^{b-1}$莫

Gamma distribution

Random variables $X \sim \operatorname{Gamma}(a, b)$ following a Gamma distribution are governed by the parameters $a, b>0$. For $x>0$:

$$
\begin{aligned}
\operatorname{Gamma}(x \mid a, b) & =\frac{1}{\Gamma(a)} b^{a} x^{a-1} e^{-b x} \\
\Gamma(a) & =\int_{0}^{\infty} t^{a-1} e^{-t} \mathrm{~d} t \\
\Gamma(n+1) & =n!\text { for } n \in \mathbb{N}_{0}^{+}
\end{aligned}
$$

The Gamma distribution is the conjugate prior for the precision (inverse variance) of a univariate Gauss

 distribution.

Overview: probability distributions

Distribution	Notation	Param.	Co-dom.	PMF / PDF	Mean	Variance
Bernoulli*	$\operatorname{Ber}(\mu)$	$\mu \in[0,1]$	$x \in\{0,1\}$	$\mu^{x}(1-\mu)^{1-x}$	μ	$\mu(1-\mu)$
Binomial* *	$\operatorname{Bin}(N, \mu)$	$N \geq 1, \mu \in[0,1]$	$x \in\{0,1, \ldots, N\}$	$\binom{N}{x} \mu^{x}(1-\mu)^{N-x}$	$N \mu$	$N \mu(1-\mu)$
Poisson*	$\operatorname{Poi}(\lambda)$	$\lambda>0$	$x \in \mathbb{N}_{0}^{+}$	$\frac{e^{-\lambda} \lambda^{x}}{x!}$	λ	λ
Uniform	$\mathrm{U}(a, b)$	$a, b \in \mathbb{R}, a<b$	$x \in[a, b]$	$\frac{1}{b-a}$	$\frac{a+b}{2}$	$\frac{1}{12}(b-a)^{2}$
Exponential	$\operatorname{Exp}(\lambda)$	$\lambda>0$	$x \in \mathbb{R}_{0}^{+}$	$x \in \mathbb{R}$	$\lambda e^{-\lambda x}$	$\frac{1}{\lambda}$
Normal/Gauss	$\mathcal{N}\left(\mu, \sigma^{2}\right)$	$\mu \in \mathbb{R}, \sigma>0$	$x \in[0,1]$	$\frac{\Gamma(a+b)}{\Gamma(a) \Gamma(b)} x^{a-1}(1-x)^{b-1}$	$\frac{a}{a+b}$	$\frac{1}{(a+b)^{2}(a+b+1)}$
Beta	$\operatorname{Beta}(a, b)$	$a, b>0$	$x \in \frac{b^{a}}{\Gamma(a)} x^{a-1} e^{-b x}$	$\frac{a}{b}$	$\frac{a}{b^{2}}$	
Gamma	$\operatorname{Gamma}(a, b)$	$a, b>0$	$x \in \mathbb{R}_{0}^{+}$		$\frac{1}{2 \sigma^{2}} \exp \left\{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right\}$	μ

*Discrete distributions

With the gamma function $\Gamma(x)=\int_{0}^{\infty} t^{x-1} e^{-t} d t$, with the property that $\Gamma(n+1)=n$! for $n \in \mathbb{N}_{0}^{+}$.

Two random variables-Bivariate case

Two random variables X and Y can interact. We need to consider them simultaneously for statistical analysis. To this end, we introduce the joint cumulative distribution function of X and Y :

$$
F_{X Y}(x, y)=\mathrm{P}(X \leq x, Y \leq y)
$$

$F_{X}(x)$ and $F_{Y}(y)$ are the marginal cumulative distribution function of $F_{X Y}(x, y)$.

Properties:

- $0 \leq F_{X Y}(x, y) \leq 1$
- $\lim _{x, y \rightarrow-\infty} F_{X Y}(x, y)=0$
- $\lim _{x, y \rightarrow \infty} F_{X Y}(x, y)=1$
- $F_{X}(x)=\lim _{y \rightarrow \infty} F_{X Y}(x, y)$

Two continuous random variables

Most properties can be defined analogously to the univariate case. Joint probability density function:

$$
f_{X Y}(x, y)=\frac{\partial^{2} F_{X Y}(x, y)}{\partial x \partial y} .
$$

Properties:

- $f_{X Y}(x, y) \geq 0$
- $\iint_{A} f_{X Y}(x, y) d x d y=\mathrm{P}((X, Y) \in A)$
- $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X Y}(x, y) d x d y=1$

If we remove the effect of one of the random variables, we yield the marginal probability density function or marginal density for short:

$$
f_{X}(x)=\int_{-\infty}^{\infty} f_{X Y}(x, y) \mathrm{d} y .
$$

Relations between $f_{X, Y}, f_{X}, f_{Y}, F_{X, Y}, F_{X}$ and F_{Y}

Two discrete random variables

Joint probability mass function:

$$
p_{X Y}(x, y)=\mathrm{P}(X=x, Y=y) .
$$

Properties:

- $0 \leq p_{X Y}(x, y) \leq 1$
- $\sum_{x} \sum_{y} p_{X Y}(x, y)=1$

In order to get the marginal probability mass function $p_{X}(x)$, we need to sum out all possible y (marginalization):

$$
p_{X}(x)=\sum_{y} p_{X Y}(x, y)
$$

Conditional distributions/Bayes' rule

	discrete	continuous
Definition	$p_{Y \mid X}(y \mid x)=\frac{p_{X Y}(x, y)}{p_{X}(x)}$	$f_{Y \mid X}(y \mid x)=\frac{f_{X Y}(x, y)}{f_{X}(x)}$
Bayes' rule	$p_{Y \mid X}(y \mid x)=\frac{p_{X \mid Y}(x \mid y) p_{Y}(y)}{p_{X}(x)}$	$f_{Y \mid X}(y \mid x)=\frac{f_{X \mid Y}(x \mid y) f_{Y}(y)}{f_{X}(x)}$
Probabilites	$p_{Y \mid X}(y \mid x)=\mathrm{P}(Y=y \mid X=x)$	$\mathrm{P}(Y \in A \mid X=x)=\int_{A} f_{Y \mid X}(y \mid x) \mathrm{d} y$

Independence

Two random variables X, Y are independent if $F_{X Y}(x, y)=F_{X}(x) F_{Y}(y)$ for all values x and y.

Equivalently:

- $p_{X Y}(x, y)=p_{X}(x) p_{Y}(y)$
- $p_{Y \mid X}(y \mid x)=p_{Y}(y)$
- $f_{X Y}(x, y)=f_{X}(x) f_{Y}(y)$
- $f_{Y \mid X}(y \mid x)=f_{Y}(y)$

Independent and identically distributed-i.i.d.

If two random variables X and Y are called identically distributed it means that the following holds:

$$
\begin{aligned}
f_{X}(x) & =f_{Y}(x) \\
F_{X}(x) & =F_{Y}(x)
\end{aligned}
$$

As a consequence (among many others):

$$
\begin{aligned}
\mathrm{E}[X] & =\mathrm{E}[Y], \\
\operatorname{Var}(X) & =\operatorname{Var}(Y) .
\end{aligned}
$$

It does not mean that $X=Y$ is true! X and Y following the same distribution does not imply that they always provide the same values! If X and Y are also independent, we call them independent and identically distributed (i.i.d.).

Expectation and covariance

Given two random variables X, Y and $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$.

- $\mathrm{E}[g(X, Y)]:=\sum_{x} \sum_{y} g(x, y) p_{X Y}(x, y)$.
- $\mathrm{E}[g(X, Y)]:=\int_{-\infty}^{\infty} g(x, y) f_{X Y}(x, y) \mathrm{d} x \mathrm{~d} y$.

Covariance

- $\operatorname{Cov}(X, Y):=\mathrm{E}[(X-\mathrm{E}[X])(Y-\mathrm{E}[Y])]=\mathrm{E}[X Y]-\mathrm{E}[X] \mathrm{E}[Y]$.
- When $\operatorname{Cov}(X, Y)=0, X$ and Y are uncorrelated.
- Pearson correlation coefficient $\rho(X, Y)$:

$$
\rho(X, Y):=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}} \in[-1,1] .
$$

- $\mathrm{E}[f(X, Y)+g(X, Y)]=\mathrm{E}[f(X, Y)]+\mathrm{E}[g(X, Y)]$.
- $\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)+2 \operatorname{Cov}(X, Y)$.
- If X and Y are independent, then $\operatorname{Cov}(X, Y)=0$.
- If X and Y are independent, then $\mathrm{E}[f(X) g(Y)]=\mathrm{E}[f(X)] \mathrm{E}[g(Y)]$.

Multiple random variables-Random vectors

Generalize previous ideas to more than two random variables. Putting all these random variables together in one vector \boldsymbol{X}, a random vector ($\boldsymbol{X}: \Omega \rightarrow \mathbb{R}^{n}$). The notions of joint CDF and PDF apply equivalently, e.g.

$$
F_{X_{1}, X_{2}, \ldots, X_{n}}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\mathrm{P}\left(X_{1} \leq x_{1}, X_{2} \leq x_{2}, \ldots, X_{n} \leq x_{n}\right)
$$

Expectation of a continuous random vector for $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$:

$$
\mathrm{E}[g(\boldsymbol{X})]=\int_{\mathbb{R}^{n}} g\left(x_{1}, x_{2}, \ldots, x_{n}\right) f_{X_{1}, X_{2}, \ldots, X_{n}}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \mathrm{d} x_{1} \mathrm{~d} x_{2} \ldots \mathrm{~d} x_{n}
$$

If $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ then the expected value of g is the element-wise values of the output vector:

$$
\mathrm{E}[g(\boldsymbol{X})]=\left[\begin{array}{c}
\mathrm{E}\left[g_{1}(\boldsymbol{X})\right] \\
\mathrm{E}\left[g_{2}(\boldsymbol{X})\right] \\
\vdots \\
\mathrm{E}\left[g_{m}(\boldsymbol{X})\right]
\end{array}\right] .
$$

Independence of more than two random variables

The random variables X_{1}, \ldots, X_{n} are independent if for all subsets $I=\left\{i_{1}, \ldots, i_{k}\right\} \subset\{1, \ldots, N\}$ and all $\left(x_{i_{1}}, \ldots, x_{i_{k}}\right)$

$$
f_{X_{i_{1}}, \ldots, X_{i_{k}}}\left(x_{i_{1}}, \ldots, x_{i_{k}}\right)=f_{X_{i_{1}}}\left(x_{i_{1}}\right) \cdot \ldots \cdot f_{X_{i_{k}}}\left(x_{i_{k}}\right),
$$

or equivalently

$$
F_{X_{i_{1}}, \ldots, X_{i_{k}}}\left(x_{i_{1}}, \ldots, x_{i_{k}}\right)=F_{X_{i_{1}}}\left(x_{i_{1}}\right) \cdot \ldots \cdot F_{X_{i_{k}}}\left(x_{i_{k}}\right),
$$

hold.

If there exists a combination of values so that the equations above do not hold then the random variables are not independent.
For better distinction, this notion of independence is sometimes called mutual independence.

Covariance matrix

For a random vector $\boldsymbol{X}: \Omega \rightarrow \mathbb{R}^{n}$, the covariance matrix $\boldsymbol{\Sigma}$ is the $n \times n$ square symmetric, positive definite matrix whose entries are

$$
\boldsymbol{\Sigma}_{i j}=\operatorname{Cov}\left(X_{i}, X_{j}\right) .
$$

$$
\boldsymbol{\Sigma}=\mathrm{E}\left[(\boldsymbol{X}-\mathrm{E}[\boldsymbol{X}])(\boldsymbol{X}-\mathrm{E}[\boldsymbol{X}])^{T}\right]=\mathrm{E}\left[\boldsymbol{X} \boldsymbol{X}^{T}\right]-\mathrm{E}[\boldsymbol{X}] \mathrm{E}[\boldsymbol{X}]^{T}
$$

Multinomial distribution

The multivariate version of the Binomial is called a Multinomial, $\boldsymbol{X} \sim \operatorname{Multinomial}(N, \boldsymbol{\mu})$. We have $k \geq 1$ mutually exclusive events with a success probability of μ_{k} (such that $\sum_{i=1}^{k} \mu_{k}=1$).
We draw N times independently.

$$
p_{\boldsymbol{X}}\left(x_{1}, x_{2}, \ldots, x_{k}\right)=\binom{N}{x_{1} x_{2} \ldots x_{k}} \mu_{1}^{x_{1}} \mu_{2}^{x_{2}} \ldots \mu_{k}^{x_{k}}
$$

where

$$
\begin{aligned}
& \sum_{k} x_{k}=N, \\
& \binom{N}{x_{1} x_{2} \ldots x_{k}}=\frac{N!}{x_{1}!x_{2}!\ldots x_{k}!}, \\
& \mathrm{E}[\boldsymbol{X}]=\left(N \mu_{1}, N \mu_{2}, \ldots, N \mu_{k}\right), \\
& \operatorname{Var}\left(X_{i}\right)=N \mu_{i}\left(1-\mu_{i}\right), \\
& \operatorname{Cov}\left(X_{i}, X_{j}\right)=-N \mu_{i} \mu_{j} .
\end{aligned}
$$

Example: An urn with n balls of $k \geq 1$ different labels, drawn $N \geq 1$ times with replacement and probabilities $\mu_{k}=\frac{\# k}{n}$.
The marginal distribution of X_{i} is $\operatorname{Bin}\left(n, \mu_{i}\right)$.

Multivariate Gaussian

The multivariate version of the Gaussian $\boldsymbol{X} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ is very similar to the univariate, except that it allows for dependencies between the individual components. $\mu \in \mathbb{R}^{k}$ is the mean vector, the positive definite, symmetric $\boldsymbol{\Sigma} \in \mathbb{R}^{k \times k}$ the covariance matrix

$$
f_{\boldsymbol{X}}\left(x_{1}, x_{2}, \ldots, x_{k}\right)=\frac{1}{\sqrt{(2 \pi)^{k} \operatorname{det} \boldsymbol{\Sigma}}} \exp \left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right)
$$

where

$$
\begin{aligned}
& \mathrm{E}[\boldsymbol{X}]=\boldsymbol{\mu}, \\
& \operatorname{Var}\left(X_{i}\right)=\boldsymbol{\Sigma}_{i i}, \\
& \operatorname{Cov}\left(X_{i}, X_{j}\right)=\boldsymbol{\Sigma}_{i j} .
\end{aligned}
$$

The marginal distribution of X_{i} is $\mathcal{N}\left(\mu_{i}, \boldsymbol{\Sigma}_{i i}\right)$.

Notation in the lecture

Consider

$$
p_{X}(x), \quad x \in \mathbb{R} \quad \text { vs } \quad p_{X}(y), \quad y \in \mathbb{R}
$$

$p_{X}(x), f_{X}(x), p_{X Y}(x, y), f_{X Y}(x, y)$ are written as $p(x)$ or $p(x, y)$. Likewise $p_{Y}(y)$ is written as $p(y)$.

