
Training Neural Networks with

Implicit Variance

Justin Bayer, Christian Osendorfer, Sebastian Urban, and Patrick van der
Smagt

Technische Universität München, Fakultät für Informatik, Lehrstuhl für Robotik und
Echtzeitsysteme, Boltzmannstraße 3, 85748 München

Abstract. We present a novel method to train predictive Gaussian dis-
tributions p(z|x) for regression problems with neural networks. While
most approaches either ignore or explicitly model the variance as an-
other response variable, it is trained implicitly in our case. Establishing
stochasticty by the injection of noise into the input and hidden units, the
outputs are approximated with a Gaussian distribution by the forward
propagation method introduced for fast dropout [1]. We have designed
our method to respect that probabilistic interpretation of the output
units in the loss function. The method is evaluated on a synthetic and a
inverse robot dynamics task, yielding superior performance to plain neu-
ral networks, Gaussian processes and LWPR in terms of mean squared
error and likelihood.

1 Introduction

Deep learning stands at the center of several key advancements in visual and
audio recognition in the past few years [2, 3]. The stacking of several layers
of computation results in a hierarchy of feature detectors of which each con-
veys new intermediate representations of the data. Prediction is assumed to be
substantially easier in these representational spaces than in input space, since
previously entangled “factors of variation” [4] are well separated. Initially, re-
search on deep learning was started by [5] of which a crucial ingredient was
the greedy layer wise pretraining in an unsupervised fashion. Yet, the increase
in availabilty of computational power (especially in the form of GPUs) showed
that deep neural networks can as well be trained if lots of data is available [6],
special non-saturating units are used [7] or with the help of a powerful regu-
larizer named dropout [8]. The latter randomly discards units in the network
during training, making co-adaption of units and thus poor generalization less
likely.

Perceiving the units of a network as stochastic entities goes back at least
to [9]. While neural networks can be used to represent any output distribution
which can be summarized by a finite number of su�cient statistics, these have
to be defined a priori and are not part of the learning. Contrary, the promise of
stochastic networks is that p(z|x) can have a number of maxima exponential in
the number of units, allowing complex one-to-many relations.

Patrick van der Smagt
Proc. 2013 International Conference on Neural Information Processing

2

Research on these models has seen notable papers most recently. For one,
[10] introduces a deep density estimator p(x) which can be e�ciently trained
via back-propagation [11] and is a consistent estimator of the underlying data
distribution. Learning a stochastic feed-forward net leading to a multi-modal
output distribution p(z|x) is made practical in [12]. Novel techniques to train
stochastic neural networks with back-propagation have been presented in [13].

Using deep architectures for the estimation of predictive distributions has
been tackled before in [14, 15]. Our contribution is to make use of findings from [1]
to approximate each unit in a stochastic neural network up to second order with
a Gaussian and reflect this in the construction of the loss. This leads to unimodal
Gaussian predictive distributions which play nicely with dropout regularization
for deep neural networks.

2 Approach

The well known method of mixture density networks [16] and a recent develop-
ment in approximating dropout [1] lie at the heart of our work. A brief overview
of both will be given in order to establish a base upon which our contribution
can be described. We begin with a short review of neural networks.

2.1 Neural Networks

Neural networks can be described as a stack of layers of which each consists
of an adaptable a�ne transformation and a subsequent nonlinear function. Let
x 2 RI be an input to the network from which we wish to produce an output
y 2 RO. Given a network of K layers, we compute the output u of a layer given
the output of the previous layer u0 via the following equation

u = f(u0W + b), . (1)

The weight matrix W , the bias term b and the transfer function f are layer spe-
cific. The whole set of adaptable parameters is referred to as ✓ = {(W k, bk)}Kk=1

where we added the top index to distinguish between parameters from di↵er-
ent layers. Typical choices for the transfer functions {fk}Kk=1

are the sigmoid

f() = 1

1+exp(�) , the rectifier f() = max(, 0) or the identity f() = , where
 2 R. Transfer functions are applied component wise. A single component of a
layer is referred to as a unit or neuron.

The most popular and arguably most e�cient way to adapt the behaviour as
desired is backpropagation [11, 17, 18]. Doing so involves the definition of a loss
function L(✓) which can be di↵erentiated with respect to the parameters ✓ and
fed into an optimizer such as stochastic gradient descent or nonlinear conjugate
gradient. One of the most common choices for a loss function is the mean squared
error:

L
MSE

(✓) =
1

N

NX

i

||yi � zi||2
2

. (2)

3

It is defined as a sum over a data set D = {(xi, zi)}Ni=1

which consists of inde-
pendent samples from a function which the network shall mimic. A probabilistic
interpretation is that the network models the data with a Gaussian conditioned
on the input: p(z|x) = N (µ(x),�2), where the mean is defined by the output of
the network, i.e. µ(x) = y. The variance �2 is assumed to be constant, which is
commonly referred to as homoscedastic variance. Taking the log of the likelihood
of the data

Q
i p(zi|xi) and neglecting constant terms irrelevant to optimization

leaves us with Equation (2).

2.2 Density Networks

Mixture density networks [16] are ordinary neural networks with special trans-
fer function at the last layer and a matching loss. The output represents the
su�cient statistics of a mixture of Gaussians: priors, means and covariances of
each component. The resulting model can be trained via maximum likelihood
by numerical minimization of the negative loglikelihood. We consider mixture
density networks with only a single component and a diagonal covariance, and
thus call them density networks for brevity. Given a regression problem of target
dimensionality D, that is D = {(xi, zi)} with zi 2 RD, the output layer is de-
signed to be of size O = 2D. The first D components represent the mean while
the second D give the variance of a Gaussian:

µ(xi,d) = yi,d, (3)

�2(xi,d) = y2i,D+d. (4)

The square assures positive variance. We use these values to specify a condi-
tional Gaussian distribution of p(z|x) = N (µ(x),�2(x)) which is heteroscedastic
since the variance depends on the input. Computing and di↵erentiating the log
likelihood of the targets given the inputs is now straightforward and leads to
training via the average negative log likelihood:

LNLL(✓) =
1

N

X

i,d

(zi,d � µ(xi,d))2

2�2(xi,d)
+ log

q
2⇡�2(xi,d). (5)

In practice, optimization can be di�cult: the variances might collapse to very
small numbers, leading to very high likelihoods and numerical instabilities [19].
As a counter measure we added a constant term of 0.0001 to the variances in
the objective function and its gradients.

2.3 Fast Dropout

Dropout [8] is a powerful regularizer for neural networks. By randomly neglecting
input and hidden units from the network during forward- and back-propagation,
the method prevents di↵erent units of the network from coadapting and subse-
quently depending on each other too much. This results in a vast improvement

4

of performance and lead to several significant improvements in visual and audio
recognition.

A problem of dropout is that training times tend to be rather long due to
the necessesity of sampling and the resulting noisy gradients. To circumvent this,
the author’s of [1] proposed to approximate the input to each layer of the net
a = u0W + b. Using a diagonal Gaussian â ⇠ N (µ, s2) is reasonable due to the
central limit theorem. Given some mild conditions on the distribution of u0 as
well as its mean ⌫0 and variance ⌧ 02 the first two moments of â can be computed
exactly:

µ = d(⌫0W + b), (6)

s2 = diag(d(1� d)⌫02W 2 + d⌧ 02W 2). (7)

Here, d refers to the dropout rate. Obtaining the moments ⌫ and ⌧2 of o = f(â)
can then be done by propagating µ and s2 through f . This is possible in closed
form for the rectifing linear and approximately for the sigmoid. In other cases,
the unscented transform [20] or sampling can be used. The authors of [1] provide
more details; no significant loss in performance and yet significant improvements
in training time is reported, due to less sampling operations.

2.4 Implicit Variance Networks

A consequence of treating each unit in a network as stochastic and approximating
it up to second order is that the output of the network is also stochastic. Since
fast dropout already handles the forward propagation of variance, in contrast to
plain neural networks, the variance of the output units is readily available. We
propose to not to neglect the variance at the output layer. Instead we incorporate
it into the negative log likelihood (Equation (5)), where we model the statistics
with the output of the last layer, i.e. µ(xi) = mK

i and �2(xi) = (sKi)2.
We extended the model further in two ways: incorporating input variance and

a special bias for the variance of units. Variance of inputs arises naturally in many
settings (e.g. in noisy sensor data) and can be respected easily during forward
propagation from the inputs to the first hidden layer. A principled treatment for
inferring the variance of the inputs can employed by performing a factor analysis
for example. For simplicity we assume the variance to be constant over the data
set and dimensions, essentially treating it as another hyper parameter which is
set during cross validation.

During preliminary experiments, we noticed that the network duplicates units
at the last hidden layer to reduce variance at the output layer where required for
further minimizing the loss. This e↵ect, which we call “pseudo pruning” is due
to the (invalid) assumption of independency between the activations of a layer.
The network can just copy a unit and half their outgoing weights to reduce the
variance contribution while maintaining the mean contribution to the following
layer. 1

1 We omit a formal argument due to space restrictions.

5

While pseudo priuning might seem desirable as it reduces overfitting, it can
lead to extreme underfitting and is also computationally not e�cient. The for-
ward propagation of variance (given in Equation (7)) was thus adapted to the
following:

s2 = diag(d(1� d)⌫02W 2 + d⌧ 02W 2)� �, (8)

where � is the element wise product and � > B is constrained to be greater
than some positive number B; this can be done by elegantly by reparametrizing
� = exp(�̂)+B and optimizing with respect to �̂. Again, B is treated as another
hyper parameter and optimized via cross validation.

3 Experiments

We present experiments on a synthetic data set involving heteroscedastic be-
haviour as a sanity check for our model. We then move to a real world bench-
mark where inverse robot dynamics are to be learned; this task has been tackled
previously in [21, 22]. 2

For all experiments, the inputs as well as the targets were normalized to zero
mean and unit variance; the former helps with optimization [23] and the latter
leads to more comparable results for evaluation as it is equivalent to using the
normalized MSE. Determination of good hyper parameters was performed via
a random search as recommended by [24] for which the search distribution is
given in Table 2; batch size and number of hidden units are data set specific and
given in the respective section. We picked 32 random configurations for each
experiment. Training took place for a fixed number of epochs after which the
network with the best score on a held out validation set was picked for final
evaluation on the test data. We minimized the L

MSE

in case of NN and FD and
L
NLL

for DN and IVN. Optimization was performed with rmsprop [25] using
Nesterov momentum [26, 27]. For the plain neural networks, where no variance
is modelled, we assume homoscedastic variance which we estimate after training
as the variance of the residuals. We report the mean squared error and the
negative log likelihood, both averaged over the test sets, in Table 1.

3.1 Toy Data

This data set was proposed by [28] in order to evaluate the ability of a model
to express heteroscedasticity in an easily inspectable way. It is governed by the
following two equations,

µi = 2(exp(�30(xi �
1

4
)2) + sin(⇡x2

i)),

�2

i = exp(sin(2⇡xi)),

2 We also considered the “Abalone” data set, but could not make the performance of
IVNs competitive with Gaussian processes (which reached an MSE of about 0.29,
compared to 0.39 for IVNS) and thus discarded that data set as a good way to
compare IVNs to other neural models.

6

which specify Gaussian distributions p(yi|xi) = N (µi,�
2

i). To generate a data set
we sample {xi} points uniformly from the input range [�0.1, 1], and then sam-
ple {yi} accordingly. To compare plain neural networks (NN), density networks
(DN), networks trained with fast dropout (FD) and implicit variance networks
(IVN), we constructed a setting which is far from tailored towards neural net-
works: very little data.

The data set contained only 50 points for training, 10 for validation and 50
additional points to asses the performance as a test set. We trained the networks
for 5000 epochs with batch size either 10, 25, 50 and 10, 25, 50 or 100 hidden
units.

Discussion Notably, all methods except ours perform as bad as expected for a
neural network model in this setting. While the density networks are en par with
our method in terms of mean squared error, they overfit extremly with respect
to their predictive distribution. Neural networks neither trained classically nor
with fast dropout achieve good results; the variance of fast dropout seems to be
meaningless, which is not surprising as it is not trained.

Table 1. Results on the toy benchmark and the sarcos data set.

Toy Sarcos

Method MSE NLL MSE NLL
NN 4.2395 2.2694 0.0047 -1.1893
DN 3.8706 9.7303 0.0096 -1.2532
FD 4.3491 43486.7 0.0065 1.2667
IVN 3.8985 1.6187 0.0079 -1.3606

Table 2. Hyper parameter ranges common over di↵erent data sets.

Hyper parameter Choices
#hidden layers 1, 2, 3
Transfer function rectifier, sigmoid
Step rate 10�5

, 10�4
, 10�3

, 10�2
, 10�1

Momentum 0, 0.5, 0.9, 0.99, 0.999
Decay 0.7, 0.8, 0.9
Input variance 0, 0.1, 0.2
Variance o↵set B 0, 0.5, 1

3.2 Sarcos: Inverse Robot Dynamics

We evaluated the models under consideration on a standard benchmark for learn-
ing robot inverse dynamics, the “Sarcos” data set. We trained the networks for

7

Fig. 1. Predictive distributions of IVNs and DNs on the toy benchmark.

500 epochs and picked the batch size from {64, 128, 256, 512} and the number of
hidden units from {50, 100, 200, 300}. We want to stress several observations. For
one, IVNs seem to be the best choice if one is interested in good performance of
both MSE and NLL. Secondly, plain neural networks perform surprisingly well
in our experiments. While both Gaussian processes and LWPR models have dif-
ferent advantages compared to neural networks (model uncertainty and e�cient
incremental online learning, respectively) our experiments show that both are
outperformed in terms of predictive quality.

4 Conclusion and Future Work

We presented a novel method to estimate predictive distributions via deep neural
networks that plays nicely with fast dropout. The results are competitive or
superior to other neural approaches in our experiments and en par with Gaussian
processes and LWPR in a robotics task. Future work will focus on multi-modal
output distributions by employing a mixture density like output architecture;
application to recurrent neural networks is straightforward. We will also evaluate
how principled detemrination of the input variances plays with our approach.

References

1. Wang, S., Manning, C.: Fast dropout training. In: Proceedings of the 30th Inter-
national Conference on Machine Learning (ICML-13). (2013) 118–126

2. Krizhevsky, A., Sutskever, I., Hinton, G.: Imagenet classification with deep convo-
lutional neural networks. In: Advances in Neural Information Processing Systems
25. (2012) 1106–1114

3. Dahl, G.E., Yu, D., Deng, L., Acero, A.: Context-dependent pre-trained deep neu-
ral networks for large-vocabulary speech recognition. Audio, Speech, and Language
Processing, IEEE Transactions on 20(1) (2012) 30–42

4. Larochelle, H., Erhan, D., Courville, A., Bergstra, J., Bengio, Y.: An empirical
evaluation of deep architectures on problems with many factors of variation. In:
Proceedings of the 24th international conference on Machine learning, ACM (2007)
473–480

5. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with
neural networks. Science 313(5786) (2006) 504–507

8

6. Ciresan, D., Meier, U., Schmidhuber, J.: Multi-column deep neural networks for
image classification. In: Computer Vision and Pattern Recognition (CVPR), 2012
IEEE Conference on, IEEE (2012) 3642–3649

7. Zeiler, M., Ranzato, M., Monga, R., Mao, M., Yang, K., Le, Q., Nguyen, P., Senior,
A., Vanhoucke, V., Dean, J., et al.: On rectified linear units for speech processing,
ICASSP (2013)

8. Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.:
Improving neural networks by preventing co-adaptation of feature detectors. arXiv
preprint arXiv:1207.0580 (2012)

9. Neal, R.M.: Connectionist learning of belief networks. Artificial intelligence 56(1)
(1992) 71–113

10. Bengio, Y., Thibodeau-Laufer, .: Deep generative stochastic networks trainable by
backprop. (2013)

11. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-
propagating errors. Nature 323(6088) (1986) 533–536

12. Tang, Y., Salakhutdinov, R.: A new learning algorithm for stochastic feedforward
neural nets. (2013)

13. Bengio, Y.: Estimating or propagating gradients through stochastic neurons. arXiv
preprint arXiv:1305.2982 (2013)

14. Salakhutdinov, R., Hinton, G.: Using deep belief nets to learn covariance kernels for
gaussian processes. Advances in neural information processing systems 20 (2008)
1249–1256

15. Uria, B., Murray, I., Renals, S., Richmond, K.: Deep architectures for articulatory
inversion. In: Proceedings of Interspeech. (2012)

16. Bishop, C.M.: Mixture density networks. (1994)
17. Werbos, P.: Beyond regression: New tools for prediction and analysis in the be-

havioral sciences. (1974)
18. Le Cun, Y.: Learning process in an asymmetric threshold network. In: Disordered

systems and biological organization. Springer (1986) 233–240
19. Bishop, C.M., et al.: Pattern recognition and machine learning. Volume 1. springer

New York (2006)
20. Julier, S.J., Uhlmann, J.K.: New extension of the kalman filter to nonlinear sys-

tems. In: AeroSense’97, International Society for Optics and Photonics (1997)
182–193

21. Vijayakumar, S., D’souza, A., Schaal, S.: Incremental online learning in high di-
mensions. Neural computation 17(12) (2005) 2602–2634

22. Rasmussen, C.E.: Gaussian processes for machine learning. Citeseer (2006)
23. LeCun, Y., Bottou, L., Orr, G.B., Müller, K.R.: E�cient backprop. In: Neural

networks: Tricks of the trade. Springer (1998) 9–50
24. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. The

Journal of Machine Learning Research 13 (2012) 281–305
25. Tieleman, T., Hinton, G.: Lecture 6.5 - rmsprop: Divide the gradient by a run-

ning average of its recent magnitude. COURSERA: Neural Networks for Machine
Learning (2012)

26. Sutskever, I.: Training Recurrent Neural Networks. PhD thesis, University of
Toronto (2013)

27. Sutskever, I., Martens, J., Dahl, G., Hinton, G.: On the importance of initialization
and momentum in deep learning. (2013)

28. Le, Q.V., Smola, A.J., Canu, S.: Heteroscedastic gaussian process regression. In:
Proceedings of the 22nd international conference on Machine learning, ACM (2005)
489–496

