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Abstract— The recognition of actions from video sequences

has many applications in health monitoring, assisted living,

surveillance, and smart homes. Despite advances in sensing,

in particular related to 3D video, the methodologies to process

the data are still subject to research. We demonstrate superior

results by a system which combines recurrent neural networks

with convolutional neural networks in a voting approach. The

gated-recurrent-unit-based neural networks are particularly

well-suited to distinguish actions based on long-term informa-

tion from optical tracking data; the 3D-CNNs focus more on

detailed, recent information from video data. The resulting fea-

tures are merged in an SVM which then classifies the movement.

In this architecture, our method improves recognition rates of

state-of-the-art methods by 14% on standard data sets.

I. INTRODUCTION

Recognition of human activity in 3D videos has received
increasing attention since 2010 [1]–[7]. Compared to 2D
videos, 3D videos provide more spatial information and
could be more informative. Action recognition with 3D
videos is applied in different fields, such as health monitoring
for patients, assisted living for disabled people, and robot
perception and cognition.

Following this line of research, this paper proposes and
applies novel deep-learning methods on what is currently
the largest 3D action recognition dataset. Our results are
compared with existing best approaches and are shown to
be superior. Our proposed deep-learning methods consist
mainly of three parts: a novel skeleton-based recurrent neu-
ral network structure, using a 3D-convolutional [8] neural
network for RGB videos, and sketching a new two-stream
fusion method to combine RNN and CNN. All methods
are evaluated on the NTU RGB+D Dataset [2]. The dataset
was published in 2016 and contains more than 56k action
samples in four different modalities: RGB videos, depth map
sequences, 3D skeletal data, and infrared videos. The dataset
consists of 60 different action classes including daily, health-
related, and mutual actions. In this paper, we use both the
3D skeletal data and RGB videos.

Traditional studies on 3D action recognition use different
kinds of methods [1], [9]–[52] to compute handcrafted fea-
tures, while deep-learning approaches [2]–[7], [53], [54] are
end-to-end trainable and can be applied directly on raw data.
Focussing on the latter, for skeleton-based activity analysis,
[2]–[5] used different kinds of recurrent neural networks to
acquire state-of-the-art performances on various of 3D action
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datasets. Du et al. [3] propose an hierarchical RNN, which is
fed with manually divided five groups of the human skeleton,
such as two hands, two legs, and one torso. Inspired from
this, Shahroudy et al. [2] present a novel long short-term
memory (LSTM) [55] cell, called part-aware LSTM, which
is also fed with separated five parts of skeleton. Evolved from
these two ideas, Zhu et al. [5] provide a novel deep RNN
structure, which can automatically learn the co-occurrence,
similar to grouping data into five human body parts, from
skeleton data. Most recently, Liu et al. [4] propose a skeleton
tree traversal algorithm and a new gating mechanism to
improve robustness against noise and occlusion.

However, our proposed RNN structure makes a different
contribution. Our method is inspired by recent normalization
technologies [56] and a novel recurrent neuron mechanism
[57]. With these advanced deep learning technologies em-
bedded into our RNN structure, it can be trained with 13
times fewer iterations and for each iteration consumes 20%
less computational time, compared to a normal RNN model
with LSTM cells. Our contribution focuses more on making
the network much easier to train, less inclined to overfitting,
and deep enough to represent the data. More importantly,
our proposed RNN structure outperforms all other skeleton-
based methods on the largest 3D action recognition dataset.

To process RGB videos, our method is inspired by dif-
ferent kinds of convolutional neural networks [8], [58]–[60].
We use a 3D-CNN [8] model on the RGB videos of the NTU
RGB+D dataset. We compare the results with proposed RNN
models, and fuse their output.

To combine the RNN and CNN models, we propose two
fusion structures: decision and feature fusion. The first is
very simple to use, whereas the second provides a better per-
formance. For decision fusion, we illustrate a voting method
based on the confidence of the classifiers. For feature fusion,
we propose a novel two-stream RNN/CNN structure, shown
in Fig. 4, which combines temporal and spatial features from
the RNN and CNN models and boost the performance by
a significant margin. Our two-stream RNN/CNN structure
outperforms the current state-of-the-art method [4] more than
14% on both cross subject and cross view settings.

To summarize, our contributions in this paper are:
• A novel RNN structure is proposed, which converges

13 times faster during training and costs 20% less
computational power at each forward pass, compared
to a normal LSTM;

• Two fusion methods are proposed to combine the pro-
posed RNN structure and a 3D-CNN structure [8]. The
decision fusion is easier to use, while the feature fusion
has superior performance.
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II. METHODOLOGY

In this section, we first introduce the concept of re-
current neural networks and batch normalization, and then
describe the proposed RNN structure: a deep bidirectional
gated recurrent neural network with batch normalization and
dropout. Afterwards, the applied 3D-CNN model and two-
stream RNN/CNN fusion architectures, i.e., decision fusion
and feature fusion, are introduced.

A. Recurrent Neural Network
1) Vanilla Recurrent Neural Network: Recurrent neu-

ral networks can handle sequence information with varied
lengths of time steps. This transforms the input X to a
internal hidden state h

t

at each time step. The network passes
the state h

t

along with the next input x
t+1 to the neuron, time

step after time step. The neuron learns when to remember
and forget information with nonlinear activation functions:

h

t

= �

✓
W

✓
x

t

h

t�1

◆◆
(1)

y

t

= � (Vh

t

) (2)

where t 2 {1, . . . , T} represents time steps, and � represents
a nonlinear activation function such as a standard logistic
sigmoid function sigm(x) = 1/(1 + e�x) or a hyperbolic
tangent function tanh(x).

Multiple layers of RNN can be stacked to increase the
complexity:
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where l 2 {1, ..., L} denotes the layer number.
In practice, a vanilla RNN does not remember information

over a longer time; a problem which is related to the
vanishing gradient problem.

2) Long Short-Term Memory: This problem can be solved
by LSTM [55] which stores information in gated cells at the
neurons. This allows errors to be backpropagated through
hundreds or thousands of time steps:
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where i, f and o denote input gate, forget gate, and output
gate, respectively. ĉ

t

represents new candidate values, which
could be added to the cell state c

t

. We use � for element-
wise multiplication.

3) Gated Recurrent Unit: An improvement to LSTM
called gated recurrent unit (GRU) was proposed in [57].
GRU has a simpler structure and can be computed faster.
The three gates from LSTM are combined into two gates,
respectively updating gate z and resetting gate r in GRU.
GRU also combines cell state c

t

and hidden state h

t

into
one state h

t

. The mathematical description is as follows:
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where ĥ

t

denotes new candidate state values.
4) Bidirectional Recurrent Neural Network: A bidirec-

tional RNN [61] performs a forward pass and a backward
pass, which runs input data from t = T to t = 1 and from
t = 1 to t = T , respectively.

For classification, the output of an RNN y

t

can be passed
to a fully-connected layer with softmax activation functions;
this allows us to interpret the output as a probability.

5) Batch Normalization: To train a deep neural network,
the internal covariate shift [56] slows down the training pro-
cess. The internal covariate shift is the distribution of each
layer’s input changes during training, because the parameters
in the previous layer are changing. To reduce the internal
covariate shift, we could whiten the layer activations, but
this takes too much computation power. Batch normalization,
a part of the neural network structure, approximates this
process by standardizing the activations x using a statistical
estimate of the mean bE(x) and standard deviation dVar(x)
for each training mini-batch. It can be shown that

BN(x; �,�) = �

x� bE(x)q
dVar(x) + ✏

+ � (12)

where � 2 Rd and � 2 Rd are scale and shift parameters for
the activation x 2 Rn⇥d. With these, identity transformation
for each activation could be presented. ✏ 2 R is a constant
added as a regularization parameter for numerical stability.
The division in Eq. (12) is performed element-wise. � and
� are learned during training and fixed during inference.

6) Proposed RNN Structure: For skeleton-based action
recognition tasks, the data set consists of the 3D coordinates
of a number of body joints. We feed this information,
together with action labels, to an RNN. This RNN network
has two bidirectional layers, each of which consists of 300
GRU cells. After the recurrent layers follows the batch
normalization layer, which standardizes the activations from
the RNN layer. Then the normalized activations flow to
the next fully-connected layer with 600 rectified linear unit
(ReLU) [62] activation functions. During training, in each
iteration the network randomly drops out 25% of the neurons
between the batch normalization layer and the next fully-
connected layer to reduce overfitting. Lastly, a softmax layer



Fig. 1: Proposed RNN structure using two bidirectional
gated recurrent layers with batch normalization, dropout, one
hidden fully-connected layer, and one output softmax layer.
For clarity, the temporal recurrent structure of GRU cells is
not shown here.
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Fig. 2: Illustration of 3D convolution operation on a video
volume resulting in another volume. H and W are height and
width of a frame, T means the maximal time step of a video.
k denotes the size of a kernel.

maps the compressed motion information (features) to 60
action classes. Fig. 1 shows the structure of this RNN
network.

To highlight the improvements of this final proposed
model, we compare our approach to simpler models. These
models are a standard RNN; an LSTM-RNN; LSTM plus
batch normalization (“LSTM-BN”), LSTM-BN with dropout
(“LSTM-BN-DP”), GRU-BN-DP, and a bidirectional GRU-
BN-DP which we call “BI-GRU-BN-DP”. All these models
have one recurrent layer. The next complexity is adding
an extra layer of hidden units to the last model (“2 layer
BI-GRU-BN-DP”). Finally, we add another fully-connected
layer on top, before the softmax layer, and call this model
“2 layer BI-GRU-BN-DP-H”. Sec. III discusses the results
of all models.

B. Convolutional Neural Network

To process RGB videos, we choose to use the 3D-CNN
model from [8], as it shows promising performances on
2D video action recognition tasks. We believe that 3D
convolution nets are more suitable for learning features from
videos than 2D convolution nets.

2D convolution generates a series of 2D feature maps from
images. Inspired by this, a 3D convolution processes frame
clips, where the third dimension is time step, which results
in a series of 3D feature volumes, as shown in Fig. 2. This
compressed representation contains spatiotemporal informa-
tion from the video clips. To learn a rich amount of features,
multiple layers of convolution and max-pooling operations
are stacked into one model.

To be specific, the 3D-CNN model [8], which we choose,
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Fig. 3: 3D-CNN structure (C3D): 8 convolution, 5 max-
pooling, 2 fully-connected layers, and 1 softmax output layer.
All convolution kernels are of size 3 ⇥ 3 ⇥ 3 with stride 1.
Number of filters are shown in each box. All pooling kernels
are 2⇥ 2⇥ 2, except the first one, which is 1⇥ 2⇥ 2. Each
fully-connected layer has 4096 units.

has five convolutional groups, each group has one or two
convolutional layers and one max-pooling layer, two fully-
connected layers, and one softmax output layer. The details
of this model are presented in Fig. 3.

We finetune this model with pretrained parameters [8] on
Sports-1M Dataset, which has approximately one million
YouTube videos. This reduces overfitting and demands less
training time on the current dataset.

C. Two-stream RNN/CNN
As having the proposed RNN structure for the skeleton

data and the 3D-CNN model for the RGB videos, we want
to combine the strengths of RNN and CNN nets. To improve
the performance, we propose two fusion models, decision
fusion and feature fusion.

1) Decision Fusion: In the case of decision fusion, we
use a simple but efficient voting method, inspired by majority
voting. As a result of having only two classifiers, we cannot
apply majority voting. Instead, the fusion method predicts
based on voting confidence.

We first split the dataset into training, validation and
testing. The same training set is used to train the RNN
and CNN nets. The validation set is then used to find the
best parameters, trust weights w

r

and w

c

for the voting
method. We initialize the trust weights with equal values,
which means w

r

= 1.00 and w

c

= 1.00 for both RNN and
CNN classifiers. Afterwards, we compare the confidences,
which are the highest probabilities of softmax output from
both classifiers for each prediction. The more confident one
wins:
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where y(x
i

) is the fused prediction for sample x

i

; y
r

and y

c

denote RNN and CNN prediction, respectively.
Based on this concept, we develop a way to fuse the

predictions from RNN and CNN. We evaluate the perfor-
mance with the validation dataset and search for the best trust
weights for decision fusion. Having only two parameters w

r

and w

c

, only little tuning is needed.
2) Feature Fusion: Another way to combine these two

neural networks is feature fusion.
We first train the RNN and CNN models on the training

dataset. As in training, neural nets can learn discriminant
information from raw data. Thus, we use the trained RNN
model to extract temporal features from 3D skeleton data



Fig. 4: Two-stream RNN/CNN structure: The RNN stream is
fed with the 3D coordinates of two human skeletons as input,
then followed by two bidirectional gated recurrent layer with
300 units in each direction. The output from recurrent layers
is later batch-normalized. Dropout is only enabled during
training with 75% keep probability. The RNN features come
from the fully-connected layer. The CNN stream is fed
with RGB clips (16 frames as a clip) and consists of five
convolution groups and a fully-connected layer (fc-6). The
CNN features are extracted from the fc-6 layer and later
combined with RNN features, then L2-normalized, and fed
to a linear SVM, which predicts the actions.

and use the trained CNN model to learn spatiotemporal
features from RGB videos. Both features come from the
first fully-connected layer in each model. The features are
concatenated, L2 normalized, and eventually, fed to a linear
SVM classifier.

The SVM parameter C is found using the validation
dataset. Then the model is tested on the test set. The feature
fusion structure for two streams of RNN and CNN features
is presented in Fig. 4.

III. EXPERIMENTS

The models introduced in the previous section are eval-
uated in the experiments. The dataset is first introduced in
this section, then the setups and parameter settings for the
experiments are illustrated. We compare the results of the
proposed models with the current best methods. In the end,
we analyze and discuss the problems related to deep learning
methods for 3D action recognition.

A. NTU RGB+D Dataset [2]
The proposed approaches are evaluated on the NTU

RGB+D dataset [2], which we know as the current largest
publicly available 3D action recognition dataset. The dataset
consists of more than 56k action videos and 4 million frames,
which were collected by 3 Kinect V2 cameras from 40
distinct subjects, and divided into 60 different action classes
including 40 daily (drinking, eating, reading, etc.), 9 health-
related (sneezing, staggering, falling down, etc.), and 11
mutual (punching, kicking, hugging, etc.) actions. It has four
major data modalities provided by the Kinect sensor: 3D
coordinates of 25 joints for each person (skeleton), RGB
frames, depth maps, and IR sequences. In this paper, we
use the first two modalities, since they are the two most
informative modalities.

The large intra-class and view point variations make this
dataset challenging. However, the large amount of action
samples makes it highly suitable for data-driven methods.

This dataset has two standard evaluation criteria [2]. The
first one is a cross-subject test, in which half of the subjects
are used for training and the other half are used for testing.
The second one is a cross-view test, in which two viewpoints
are used for training and one is excluded for evaluation.

B. Implementation details
In our experiments, the implementation consists of RNN,

CNN, and Fusion. For all these models we use the same
training, validation and testing splits. The validation set is
composed of 10% of the subjects in the training set in [2].
The remaining subjects in the training set [2] make up the
training set.

1) RNN Implementation: In the RNN experiments, we
have two human skeletons as input, each skeleton has 25
3D coordinates. Since the longest time step is 300, we pad
all the action sequences to a length of 300. The dimension of
each action sample is 300 (time steps)⇥ 150 (coordinates).

We use TensorFlow [63] with TFlearn [64] and run the
experiments on either one NVIDIA GTX 1080 GPU or one
NVIDIA GTX TITAN X GPU. We train the network using
RMSprop [65] optimizer and set learning rate as 0.001, decay
as 0.9, and momentum as 0. We train the network from
scratch using mini-batches of 1000 sequences for one-layer
models and use mini-batches of 650 sequences for two-layer
models. For all RNN nets, we use 300 neurons for each
single-directional layer, double the amount of neurons for
bidirectional layers, and we use a 75% keep probability for
dropout. For batch normalization, we initialize � as 1.0, � as
0.0, and set ✏ as 1⇥10�5. The estimated means and variances
are fixed during inference.

As a comparison, the mentioned parameters are the same
for all proposed RNN models, only the structure changes.

2) CNN Implementation: We use the 3D-CNN model
[8] in Caffe [66] and train it on RGB frames from the
NTU RGB+D dataset, with pretrained parameters [8] from
the Sport1M dataset. From RGB videos, we extract the
frames, crop and resize them from 1920 ⇥ 1080 pixels to
320 ⇥ 240 pixels [8]. Videos are split into non-overlapped
16-frame clips.

We refer to the input of CNN model as a size of c⇥ t⇥
h⇥w, where c is the number of channels, t is the number of
time steps, h and w are the height and width of the frame,
respectively. The network takes video clips as input and
predicts the 60 action labels which belong to the 60 different
actions. It further resizes the input frames to 128⇥171 pixel
resolution. The input dimensions are 3⇥16⇥128⇥171 pixel.
During training we use jittering on the input clips by
random cropping them into 3⇥16⇥112⇥112 pixel. We fine-
tune the network with stochastic gradient descent optimizer
using mini-batches of 44 clips, with initial learning rate of
0.0001. The learning rate is then reduced by half, when no
training progress was observed [65]. The training stopped
after around 20 epochs.

For video-based prediction, the model averages the predic-
tions over all 16-frame clips split from the same video and
provides the final prediction for the input video. A similar



idea is applied for extracting features from fc-6 layer, which
averages the 4096-dimensional feature vectors over all clips
in the same video, resulting in one 4096-dimensional vector
for each video.

3) Fusion Implementation: We fuse the best RNN struc-
ture, 2 layer BI-GRU-BN-DP-H, with the 3D-CNN model,
first using decision fusion, then using feature fusion.

For decision fusion, we first extract the softmax output,
then search for the fusion parameters, trust weight w

r

and w

c

for RNN and CNN from the validation split. The parameters
are w

r

= 1.00 and w

c

= 2.88 for the cross subject setup,
and w

r

= 1.00 and w

c

= 3.02 for the cross view setup.
For feature fusion, we extract the RNN features

(600 dimensions) from the fully-connected layer, and ex-
tract CNN features (4096 dimensions) from the fc-6 layer
[8]. We then concatenate them into one feature array
(4,696 dimensions) and apply L2 normalization. In the end,
we have normalized RNN/CNN features from training, val-
idation, and testing splits. We use training and validation
splits to find the optimal value of C for linear SVM [67]
model. For both cross-subject and cross-view setups, we find
that C = 8.0 gives the best validation accuracy.

Among all the models in this paper, feature fusion model
shows the best testing results. We refer to this model as a
two-stream RNN/CNN structure as shown in Fig. 4.

C. Experimental Results and Analysis
The evaluation results are shown in Tab. I. The first 16

rows are skeleton-based methods. The 3D-CNN model (17th
row) uses RGB videos as input. The decision fusion (18th
row) and feature fusion (19th row) models use the best RNN
structure, which is the 2 Layer BI-GRU-BN-DP-H (16th
row), and the 3D-CNN (17th row) model.

Tab. I shows that our RNN structure, the 1 Layer LSTM-
BN, already outperforms the baseline method part-aware
LSTM reported in [2] because batch normalization improves
the LSTM model. Adding a dropout procedure reduces
overfitting and further improves the results (rows 11, 12).
From rows 12 and 13 we can see that the performances
of LSTM and GRU cells are similar [68]. GRU is better
in the cross-subject test and LSTM is better in the cross-
view test. On the other hand, GRU is faster than LSTM both
in computational speed and converge rate. As presented in
Fig. 5 left, for 1k training steps, the same model performs
5.42% more accurately and takes 20% less computational
time when using GRU cells than when using LSTM cells.

The addition of the extra fully-connected layer brings
another significant improvement. This increases the complex-
ity of the neural network, which helps the model capture
more inherent features from the 3D skeleton data [69].
The recurrent layers before the fully-connected layer can be
seen as a temporal feature extractor, which compact input
information (dimension 300 ⇥ 150) into 600 dimensions.
The latter part of the RNN structure can be considered as
a classifier learning to map these 600-dimensional features
to 60 different action categories. Altogether, our novel RNN
model, 2 Layer BI-GRU-BN-DP-H, outperforms all the other

Nr. Method cross subject cross view
01 Skeleton Quads [2], [9] 38.62% 41.36%
02 Lie Group [2], [10] 50.08% 52.76%
03 FTP Dynamic Skeletons [2], [11] 60.23% 65.22%
04 HBRNN-L [2], [3] 59.07% 63.97%
05 Deep RNN [2] 56.29% 64.09%
06 Deep LSTM [2] 60.69% 67.29%
07 Part-aware LSTM [2] 62.93% 70.27%
08 ST-LSTM (Tree) + Trust Gate [4] 69.2% 77.7%

09 1 Layer RNN 18.74% 20.27%
10 1 Layer LSTM 60.99% 64.68%
11 1 Layer LSTM-BN 64.07% 71.86%
12 1 Layer LSTM-BN-DP 64.69% 73.48%
13 1 Layer GRU-BN-DP 65.21% 70.36%
14 1 Layer BI-GRU-BN-DP 64.78% 73.12%
15 2 Layer BI-GRU-BN-DP 66.21% 72.46%
16 2 Layer BI-GRU-BN-DP-H 70.70% 80.23%

17 3D-CNN [8] 79.75% 83.95%

18 Decision Fusion 82.05% 86.68%
19 Feature Fusion 83.74% 93.65%

TABLE I: Comparison of testing accuracies on the NTU
RGB+D dataset. The first 8 rows are the results reported
from other papers. Rows 9 to 19 are results of the methods
evaluated in this paper. The first 16 rows are skeleton-
based methods. Our 2 Layer BI-GRU-BN-DP-H model out-
performs other methods on both evaluation protocols. In
addition, the feature fusion model further boosts accuracy
by more than 13% on both settings.
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Fig. 5: The left figure shows: For 1k training steps, the model
with GRU cells takes 20 m 31 s, reaches 52.75% validation
accuracy, while the same model with LSTM cells takes 24 m
27 s and only has 47.33% validation accuracy. The right
figure shows: For validation accuracy 56%, LSTM-BN takes
2 k training steps, while LSTM needs 46 k training steps.
Batch normalization makes the model converge 13 times
faster.

skeleton-based models including ST-LSTM (Tree traversal)
+ Trust Gate [4].

Then, we use the RGB video data to train the 3D-CNN
model. We use the voting method based on confidence to
fuse the 2 Layer BI-GRU-BN-DP-H and 3D-CNN model. In
the next step, we utilize a linear SVM [8] to fuse the fc-6
features from the CNN and the fc features from the RNN.
This further improves results by over 13% in comparison to
our best RNN, and by more than 14% compared to literature
models [2], [4]. This boosting is due to the features from
RNN and CNN model being highly complementary. The
RNN model uses 50 3D coordinates for two human bodies
over 300 time steps, and learns to find the long-term motion
pattern. Whereas the CNN model has 2D RGB frames, which
additionally has spatiotemporal information about objects,
such as cups, pens, and books. However, the CNN model can



dr
in

k 
w

at
e.

.
ea

t 
m

ea
l/s

..
br

us
hi

ng
 t

..
br

us
hi

ng
 h

..
dr

op
pi

ck
up

th
ro

w
si

tt
in

g 
do

..
st

an
di

ng
 u

..
cl

ap
pi

ng
re

ad
in

g
w

ri
tin

g
te

ar
 u

p 
pa

..
w

ea
r 

ja
ck

e.
.

ta
ke

 o
ff

 j.
.

pu
t 

on
 a

 s
..

ta
ke

 o
ff

 a
..

pu
t 

on
 g

la
..

ta
ke

 o
ff

 g
..

pu
t 

on
 a

 h
..

ta
ke

 o
ff

 a
..

ch
ee

r
ha

nd
 w

av
in

..
ki

ck
in

g 
so

..
pu

t 
so

m
et

h.
.

ho
pp

in
g 

(o
..

ju
m

p 
up

m
ak

e 
a 

ph
o.

.
pl

ay
in

g 
w

i..
ty

pi
ng

 o
n 

..
po

in
tin

g 
t.

.
ta

ki
ng

 a
 s

..
ch

ec
k 

tim
e.

.
ru

b 
tw

o 
ha

..
no

d 
he

ad
/b

..
sh

ak
e 

he
ad

w
ip

e 
fa

ce
sa

lu
te

pu
t 

th
e 

pa
..

cr
os

s 
ha

nd
..

sn
ee

ze
/c

ou
..

st
ag

ge
ri

ng
fa

lli
ng

to
uc

h 
he

ad
..

to
uc

h 
ch

es
..

to
uc

h 
ba

ck
..

to
uc

h 
ne

ck
..

na
us

ea
 o

r 
..

us
e 

a 
fa

n 
..

pu
nc

hi
ng

/s
..

ki
ck

in
g 

ot
..

pu
sh

in
g 

ot
..

pa
t 

on
 b

ac
..

po
in

t 
fin

g.
.

hu
gg

in
g 

ot
..

gi
vi

ng
 s

om
..

to
uc

h 
ot

he
..

ha
nd

sh
ak

in
..

w
al

ki
ng

 t
o.

.
w

al
ki

ng
 a

p.
.

Predicted label

drink wate..
eat  m eal/s..
brushing t ..
brushing h..

drop
pickup
throw

sit t ing do..
standing u..

clapping
reading
writ ing

tear up pa..
wear jacke..

take off j..
put  on a s..
take off a..

put  on gla..
take off g..

put  on a h..
take off a..

cheer
hand wavin..

kicking so..
put  som eth..
hopping (o..

jum p up
m ake a pho..

playing wi..
typing on ..
point ing t ..
taking a s..

check t im e..
rub two ha..

nod head/b..
shake head

wipe face
salute

put  the pa..
cross hand..
sneeze/cou..

staggering
falling

touch head..
touch ches..
touch back..
touch neck..
nausea or ..
use a fan ..

punching/s..
kicking ot ..

pushing ot ..
pat  on bac..
point  fing..

hugging ot ..
giving som ..
touch othe..

handshakin..
walking to..
walking ap..

Tr
ue

 la
be

l
Confusion m at rix

Fig. 6: The confusion matrix of the results from the feature
fusion method using the cross-view test. The rectangle area
is shown in more detail in Fig. 7.

only memorize information for 16 time steps long—longer
memorization is prohibited by GPU memory limitations.
These facts make the features from RNN and CNN model
highly complementary, as the testing results show in row 16,
17, and 19 in Tab. I.

D. Discussion

To better analyze and improve the performance of the
model, we take a closer look at actions that are highly
confusing to the two-stream RNN/CNN structure. As pre-
sented in Fig. 6 and 7, such action pairs include reading
vs. writing, putting on a shoe vs. taking off a shoe, and
rubbing two hands vs. clapping. These actions are shown
in a video at https://www.youtube.com/watch?
v=G0PXKCEgIoA. Fig. 8 shows some classified action
samples.

There could be several reasons for this observation. First,
these actions are sometimes inherent confusing. Secondly,
there are flaws in the data. Kinect depth information, from
which the NTU skeleton data is created, is quite noisy
[70], [71]. Correspondingly, the 3D skeleton data used in
our RNNs are also quite noisy [4]. RGB videos data are
more accurate and stable, but single frames carry no 3D
information. Thirdly, the 3D-CNN model [8] is trained with
small video clips, which are 16 time steps long. The CNN
model is adapted to find only short-term temporal features in
these clips. As GPU memory and computing power increase,
the model could also be adapted to find long-term temporal
features in each whole video. Lastly, although, the RNN
model can memorize the whole action sequences and give
final predictions, it has no information about the appearances
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Fig. 7: A part of the confusion matrix shown in Fig. 6. As
the figure shows, action pairs such as reading vs. writing,
putting on a shoe vs. taking off a shoe, and rubbing two
hands vs. clapping, are relatively confusing to the two-stream
RNN/CNN structure.

and movements of surrounding objects, which could be
discriminative information for the classification task.

IV. CONCLUSION AND FUTURE WORK

In this paper, we propose a novel RNN structure for 3D
skeletons that achieves state-of-the-art performance on the
largest 3D action recognition dataset. The proposed RNN
model can also be trained 13 times faster and saves 20%
computational power on each training step. Additionally, the
RGB videos from the same dataset are used to finetune a 3D-
CNN model. In the end, an efficient fusion structure, two-
stream RNN/CNN, is introduced to fuse the capabilities of
both RNN and CNN models. The results of this method are
13% higher than using the proposed RNN alone, and 14%
higher than the best published result in the literature. In the
future, we want to consider using the other sensor modalities
such as depth maps and IR sequences and see what is the
best architecture to fuse all these modalities.
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