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Abstract— We demonstrate a simple approach with

which finger force can be measured from nail col-

oration. By automatically extracting features from

nail images of a finger-mounted CCD camera, we can

directly relate these images to the force measured

by a force-torque sensor. The method automatically

corrects orientation and illumination di�erences.

Using Gaussian processes, we can relate prepro-

cessed images of the finger nail to measured force and

torque of the finger, allowing us to predict the finger

force at a level of 95%–98% accuracy at force ranges

up to 10 N, and torques around 90% accuracy, based

on training data gathered in 90 s.

I. Introduction

Understanding human hand use can be realised at the
level of kinematics: observing the position of the fingers
may not be simple, but methods exist [1] with which
the position and orientation of fingers can be accurately
measured, allowing for a reconstruction of the grip or
even of the finger kinematics [2].

To analyse human finger and hand use, the position
of the fingers or finger tips is an important source of
information. However, interaction of our fingers with the
objects that we hold can only be measured by knowing
the interaction forces, i.e., the force between the finger
(tip) and an object.

Various methods have been proposed to measure this
force. These methods are however mostly based on di-
rectly measuring the force at the interaction point, either
by creating instrumented objects, which include a force
or a force-torque sensor, or by putting force sensors on
the finger tips.

Especially this latter approach is very clumsy. Typ-
ically, thin FSRs [3] are used which can only measure
one component of force. Putting such sensors on the
finger tips changes tactile sensation as well as the surface
properties during grip, and natural experimentation is no
longer possible. The alternative approach, instrumenting
the object, is cumbersome. If unlimited gripping must
be possible, the object must be equipped with a tactile
skin, a technology which is not yet universally available;
also, these usually only measure perpendicular force, and
only limited data are available. Alternatively, a number
of force–torque sensors can be integrated into the object,
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Fig. 1. Picture of our image recording setup. A velcro strap holds
the camera on the back of the finger. A two-mirror setup is used to
observe the nail.

but then fingers must be accurately placed on the object,
and free grip and manipulation is no longer possible. This
approach also severely limits the number of objects as
well as their size in experimentation.

Our method is based on measurements of finger tip
deformations caused by pressure on the volar side. It has
been shown [4] that a clear relationship exists between
dorsal finger deformation due to volar finger pressure.
Inspired by initial work by Mascaro et al., our approach
uses the force-dependent blood distribution underneath
the finger nail. As shown by those authors, changes in
nail colouring can be used to reconstruct forces F
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, F
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,
and F

z

up to a level of ±5 N.
In a number of publications starting with [5], Mascaro

et al. devised various setups to measure finger force from
“fingernail touch sensors” based on LEDs and a grid of
photodiodes. The sensor, which can be easily worn but
must be custom made to ensure tight contact between the
sensors and the nail, can be used to reconstruct forces up
to ±2 N in x, y, and z direction [6]. The same group also
devised a camera-based system to obtain similar results
[7] and a Bayesian classifier to compute force direction
from the same source [8]. In their 2008 paper [7], the
system estimated finger forces with an accuracy of 5%–
10% for a force range of up to 10 N. The setup requires
uniform lighting which is obtained by placing the camera,
LEDs and finger in a closed dome. The accuracy of the
system is obtained by estimating the force of a fixed
number of points on the nail and finger bed, which are
located after the visual finger recording is normalised
based on a previously obtained 3D model of the finger
tip.
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Fig. 2. Recording setup. An ELMO CCD camera, attached to the
finger with a strap band, records visual data of the finger nail while
pushing an ATI Nano force-torque sensor.

Contrary to that approach, our method does not need
to acquire models of the finger. To improve the visual
information our approach uses a finger-mounted camera.
A force range of ±5 N with prediction errors below 5%
are obtained by automatically segmenting the nail from
the image, normalising the image to obtain lighting
independence, and using Gaussian processes to predict
the output. Our system does not only allow for force
prediction in the x, y, and z direction, but also the
torques ·

x

, ·

y

, and ·

z

can be accurately predicted from
the pixel image. Apart from obtaining a prediction of
the force level, our approach also gives a confidence
interval with which the accuracy of the prediction can
be evaluated. A training set gathered in 90 s at a frame
rate of 25 fps su�ces to train our system.

II. Setup

A. Hardware setup

Our final goal is to record grip force from all five fingers
of a hand simultaneously, without obstructing the grasp.
We therefore aim at recording grip force by visually
recording colour changes and deformation from the back
of the finger. While we are working on a setup in which a
remote camera can observe the complete hand, segment
the fingers, and reconstruct grip force from there, in our
current setup we simplified the segmentation part by
fixing a camera to the finger and recording the nail from
there.

The recording setup is depicted in Fig. 2. Visual data
is recorded at 25 fps, while the force-torque sensor (FTS)
is read out at 100 Hz and subsequently downsampled
to 25 Hz. Synchronisation between the visual and force–
torque data is realised by flashing a LED, visible by the
camera, by the computer recording the FTS data.

B. Processing pipeline

An overview of the processing pipeline is shown in
Fig. 4.

1) Nail tracking and stabilisation: Since the camera
is mounted on the proximal phalange of the finger, the
position of the nail in the recorded video stream is not
fixed, i.e., the pixels of the nail move in the recorded
picture when the finger is stretched or retracted. The
algorithm stabilises the position of the nail in the video
by tracking points on the nail and inverting the estimated
a�ne transformation matrix.

Let us denote the (yet unknown) set of points that
constitute the nail in the first recorded video frame of a
session by N µ R2. We will now describe the procedure
to track the nail in the video. In the first frame we
acquire the positions of the four black, circular markers
on the nail by sliding an appropriate template over the
image and observing the four locations where the sum of
squared di�erences between template and image patch
is minimised. The locations of the four markers define
the corners of a rectangular region of interest R µ N ,
which, by construction, covers only a part of the nail
but not the surrounding skin or background. We then
determine a set of salient points S µ R µ N on the nail
by detecting corners in the region of interest R using the
Shi-Tomasi [9] minimum eigenvalue method for corner
detection. Typically this method extracts 30 points on
the nail. During the successive frames of the video stream
we track the position of the set of salient points S using
the Kanade-Lucas-Tomasi point tracking algorithm [10],
[11] with three pyramid levels and a neighbourhood block
size of 31 ◊ 31 pixels. Let us denote the location during
frame n of the physical point, that was at x(1) during the
first frame, by x(n). If a point cannot be tracked during
any frame it is removed from the set S of salient points.

We assume that the transformation of the nail N in
the video due to its movement relative to the camera
is a combination of translation, scaling, rotation and
shearing. Therefore we can write

x(n) = A(n)
#
x(1), 1

$
T

for every x(1) œ N , where A(n) is the a�ne 2 ◊ 3
transformation matrix for frame n.

Under these assumptions we can use the set of about
30 tracked points S µ N to reliably calculate an estimate
Â(n) of the a�ne transformation A(n). Since S µ N

and the nail is an approximately planar and rigid object,
the result of transforming all points of frame n with the
inverted matrix Â

≠1
(n) is a frame where all points x œ N

of the nail are in the same location as in the first frame.
Thus after applying this processing step all pixels of

the nail remain at their initial coordinates during the
entire video stream.

2) Nail extraction: Although at this stage the location
of the nail is fixed, the video stream still contains images
of objects that do not belong to the nail, for example
the skin around the nail and the background. To avoid
confusion of the force learning and prediction algorithm
by these unrelated objects, the pixels belonging to the
nail must be recognised and extracted. Although it might
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Fig. 3. Stages from the nail tracking and extraction algorithms.
a) The four black markers on the nail are found using template
matching and their location is used to define a rectangular region
of interest. b) Points returned by the corner filter are tracked from
frame to frame and used to estimate the a�ne transformation
matrix. c) An edge filter is applied to the first frame of the video to
extract the contour of the nail. d) The smoothed contour is filled
from the centre point of the ROI rectangle giving the final nail
mask.

be necesssary to consider the skin around the nail to
extend the range of predictable forces beyond 10 N [7]
we decided to exclude it because, unlike the nail, the skin
cannot be treated as a rigid object and would require the
use of an additional alignment algorithm for non-rigid
bodies.

First we find edges in the first frame of the video
stream using the Canny edge detection method [12]. The
edges determined by this method give a good approxi-
mation of the contour of the nail, but it is usually not
closed. To fill the gaps in the contour line we apply a
morphological closure operation with a neighbourhood
size of 25 ◊ 25 pixels on the extracted edges. We then
remove edges that do not belong to the contour line by
discaring all edges that consist of less than 500 connected
pixels. The final nail mask is given by all connected pixels
that lie within the contour line and around the centre
point of the four markers, whose location was determined
during nail tracking within the computed contour line.
Since the nail is stationary in the video stream we can
apply the same mask for every frame.

After applying this processing step every frame con-
tains only pixels belonging to the nail. Intermediate re-
sults from the image processing pipeline described above
are shown in Fig. 3.

3) Preprocessing: After cropping the nail all frames
are converted to greyscale and scaled to a width of 72
pixels while preserving the aspect ratio. On average the
resulting frames have a height of 75 pixels. Each frame is
normalised independently by dividing every pixel by the
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Fig. 4. Training and prediction pipeline.

greyscale mean of all pixels.
The forces are normalised to have zero mean and unit

variance over the training set.
The video and force data are recorded independently

and synchronised using a bright LED flash in the video
stream. This LED is controlled by the force-recording
computer, thus allowing for time synchronisation. The
force data is downsampled to match the video framerate
of 25 frames per second.

C. Learning and prediction

We manually split each dataset into training and test
set so that the test set consists of about 15% of the data.
Training and prediction is done independently frame by
frame.

1) Gaussian processes: A Gaussian process [13] f(x)
is a collection of random variables, any finite number of
which have a joint Gaussian distribution. It is defined by
its mean function m(x) and covariance function k(x, x

Õ),

m(x) = E[f(x)]
k(x, x

Õ) = E
#!

f(x) ≠ m(x)
"!

f(xÕ) ≠ m(xÕ)
"$

Although Gaussian processes can be defined with a
variety of mean and covariance functions, here we will
only consider the zero mean function, m(x) = 0, and the



squared exponential (SE) covariance function

k(x, x

Õ) = ‡

2
f

exp
3

≠ 1
2l

2 ||x ≠ x

Õ||22
4

.

The hyperparameter l controls the characteristic length-
scale of the Gaussian process. The model assumes that
points which have distances to each other that are
smaller than l should have similar values. The hyper-
parameter ‡

f

models the variance of the data.
Given a finite set of training points x1, x2, . . . , xN with

corresponding target values y := (y1, y2, . . . , y

N

)T the
Gaussian process model predicts that the target value
f(xú) for a test sample x

ú is normally distributed with
mean

E[fú] = k

úT (K + ‡

2
n

I)≠1
y

and variance

Var[fú] = k(xú
, x

ú) ≠ k

úT (K + ‡

2
n

I)≠1
k

ú

where K

ij

= k(xi, xj), k

ú
i

= k(xi, x

ú), I is the identity
matrix and the hyperparameter ‡

2
n

is the variance of the
noise of the observations.

In our setting each pair of training point and target
value (xi, y

i

) consists of a preprocessed video frame and
the simultaneously measured force/torque. Hence each
xi is a vector of about 5,000 elements.

To determine optimal values for the hyperparameters
‡

f

, ‡

n

and l we calculate the log marginal likelihood

log p(y|X) = ≠ 1
2y

T (K + ‡

2
n

I)≠1
y

≠ 1
2 log

--
K + ‡

2
n

I

-- ≠ n

2 log 2fi ,

which is a measure of how well the Gaussian process
models the data, and maximise it using the conju-
gate gradient method on the training set with respect
to these hyperparameters. This is done separately for
each force/torque directions, thus after optimisation each
force/torque direction has its own set of hyperparame-
ters.

2) Neural network: We use a neural network with
about 5,000 input units, one for each pixel of the pre-
processed video frames, one sigmoidal hidden layer with
20 hidden units and a linear output layer with 6 units,
one for each force/torque direction. Thus the predicted
force/torque vector f(x) for a video frame x is given by

f(x) = W2‡(W1x + b1) + b2

where W2 is a 6 ◊ 20 matrix, W1 is a 20 ◊ M matrix,
where M is the number of pixels in the video frame, b1
is a vector with 20 elements and b2 is a vector with
six elements. The network is trained by minimising the
objective function

E =(1 ≠ ⁄) 1
N

Nÿ

i=1
Îf(xi) ≠ yiÎ2

2

+ ⁄

!
ÎW1Î2

2 + ÎW2Î2
2 + Îb1Î2

2 + b2
2
2
"

,

i.e., the mean squared error between the predicted
forces/torques and the measured forces/torques is min-
imised and large values for the network weights are
penalized. Our experiments showed that good results
were achieved with ⁄ = 0.3. This relatively large weight
penalty ensures that the network considers a large en-
semble of pixels for prediction with little significance of
each individual pixel, thus improving the stability of the
prediction and resilience to small movements of the nail,
camera noise, and changes of lighting conditions.

Before training we form a validation set by randomly
selecting a sequence of samples with a total length of
15% of all samples. Optimisation is done using the scaled
conjugate gradient backpropagation algorithm with early
stopping when there is no improvement of the objective
on the validation set for seven consecutive iterations.

III. Results

We tested our method on data recorded during six
sessions with a fixed force/torque sensor. The finger
pressure in the sessions S1, S2 and S3 was only applied in
the z, x and y directions respectively. Here the z direction
is the direction perpendicular to the sensor surface. In
the sessions C1, C2, and C3 the finger applied pressure
in a circular motion parallel to the sensor surface and
constant (C1, C2) or slowly increasing (C3) pressure
perpendicular to the sensor. Subjects were not guided
to vary the applied torques and there was no feedback
during the recording sessions. The data of session C3 is
shown in Fig. 5.

The force and torque predictions of the Gaussian pro-
cess (GP) and the neural network (NN) are examplarily
shown for the test set of session C3 in Fig. 6. The force
predictions F

x

, F

y

, F

z

of the GP are very accurate for all
directions and the true force is contained in the predicted
99.8% confidence interval for nearly all frames. The force
predictions of the NN closely follow the true forces,
however they are less accurate and more noisy than the
predictions made by the GP. The torque predictions ·

x

,
·

y

, ·

z

of the GP and the NN are both qualitatively
correct but for ·

y

the predicted torque is o�set by a
fixed value and the predictions for ·

z

have a smaller
amplitude than the true torque. This can be explained
by a systematical shortcoming of our experimental setup:
The torque is not measured at the contact point between
the finger and the force–torque sensor but at the central
axis of the torque sensor. Between the data sets that
were recorded, the finger was removed from the sensor
and subsequently replaced at a slightly di�erent position.
As a result, the measured torque will change; this e�ect
is clearly visible in Fig. 6. In subsequent experiments we
will add markers to the sensor surface so that the position
of the finger on the surface can be determined from the
camera image and thus the measured forces and torques
can be corrected accordingly.

In theory it should be possible to achieve better
accuracy by using full color information for the force
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Fig. 5. Recorded forces from session C3. The total length of the
recording is 99 seconds. The area shaded in blue is used as the
test set. The finger applies forces parallel to the sensor surface in a
circular motion and a slowly increasing force perpendicular to the
sensor surface.

prediction. However we could not get any significant
improvement by doing so, possibly because our video
data contained quite high levels of color noise.

To quantitatively compare the performance of neural
networks and Gaussian processes we calculate the coef-
ficient of determination

R

2 = 1 ≠
q

N

i=1(y
i

≠ f

i

)2
q

N

i=1(y
i

≠ y)2

where y = N

≠1 q
i

y

i

over the test set. Table I shows the
comparison of the prediction accuracy of neural networks
and Gaussian process regression. Although the di�er-
ences in accuracies are small the GP performs almost
always better than the neural network.

IV. Conclusion

We have demonstrated that a very simple, low-cost
setup, consisting of an o�-the-shelf camera and a force-
torque sensor can be used to visually measure finger
force and torque within a 10 N cq. 40 Nm range with an
accuracy of over 95%.

The method can predict the finger force online at
camera frame rate and training can be done in 90 s. The
resulting system is therefore perfectly suited for exper-
iments requiring grip force data, but also for detecting
grip tremor or measuring other grip force deficiencies.

While the distinction between torque and force at the
interaction between a soft finger and a sti� force-torque
sensor may be negligible at low forces and torques the
data that we record is not interpreted using models
of the force-torque transduction, but directly used in
learning the model-free representation and reconstructed
in the same fashion from the images. Our method is
stable independent of whether it is forces or torques that

are measured; rather, we compare our images to the 6-
dimensional output of the force-torque sensor indepen-
dent of the physical interpretation.

Based on this simple yet powerful method we will
extend our work by allowing for larger force ranges, but
also extend our methodologies to the use of stationary
cameras which can detect multiple fingers at the same
time. Once this has been attained, fully interaction-free
grip force measurement can be performed to obtain a full
analysis of force and torque from imaging.
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Fig. 6. Comparison of Gaussian process regression and neural network based prediction on the test set of session C3. a) The true value
of the force or torque respectively is shown by the black line and the prediction by GP regression is shown in red. b) Di�erence between
the prediction and the true value. In both plots the 99.8% confidence interval of the predictor is shaded in grey. c) Same as (a) using
neural networks. d) Same as (b) using neural networks. The o�set in the prediction of ·y is explained in the text.

TABLE I
Accuracy of neural networks and Gaussian processes and the estimated standard deviation given by the GP on the test

set.

The better prediction is printed in bold. Since during sessions S1, S2 and S3 the finger only applied forces in the z, y, and x directions,
those directions for which not enough data was available to compute an accurate prediction are indicated by a dash.

Dataset neural network
Ô

R

2 Gaussian process
Ô

R

2 GP rel. est. std. deviation
x y z x y z x y z

S1 force – – 0.963 – – 0.984 – – 0.099
torque 0.803 0.898 – 0.787 0.888 – 0.104 0.126 –

S2 force – 0.926 0.972 – 0.978 0.990 – 0.068 0.094
torque 0.911 0.809 0.911 0.879 0.868 0.966 0.077 0.152 0.144

S3 force 0.951 – 0.957 0.992 – 0.963 0.088 – 0.088
torque 0.771 0.637 0.000 0.695 0.851 0.266 0.163 0.175 0.333

C1 force 0.974 0.975 0.973 0.988 0.990 0.974 0.095 0.091 0.108
torque 0.930 0.845 0.876 0.937 0.921 0.960 0.140 0.152 0.104

C2 force 0.933 0.932 0.949 0.994 0.989 0.988 0.086 0.085 0.086
torque 0.937 0.810 0.818 0.969 0.836 0.918 0.125 0.169 0.125

C3 force 0.950 0.963 0.942 0.992 0.996 0.967 0.072 0.066 0.113
torque 0.916 0.000 0.692 0.925 0.000 0.733 0.078 0.068 0.069

average force 0.952 0.947 0.958 0.992 0.988 0.978 0.085 0.078 0.098
torque 0.878 0.665 0.659 0.865 0.727 0.769 0.115 0.140 0.155


