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Abstract—This paper presents a method for learning and  algorithms which may be generally useful in this context.
generating rhythmic movement patterns based on a simple \We demonstrate our approach in an application which
central oscillator. It can be used to generate cyclic movements consists of wiping surfaces which are previously specified

for a robot system which has to solve complex tasks. The b detected b . t onl L
system is laid out in such a way that multiple motion dimen- Y & USEr Or detected by a vision system. Only a “wiping

sions, or degrees of freedom of the robot, are represented Styl€” has to be taught by the user, in the form of a primitive
independent of each other; therefore, an extension to higher- movement pattern.

dimensional problems is easily possible. Guiding the robot by The solution presented in this paper is focused on the
holding its end-effector, the user teaches simple movement followind topics:

primitives forming the basis for a more complex task. Each g topics:
movement primitive is represented in the system using an

v I s ) | « teaching and learning phase of the primitive move-
oscillator combined with a learned nonlinear mapping. These

primitives are then optimally combined to a complete solution
to the posed problem. Said optimality is obtained using
simulated annealing with the A" global search algorithm. Our
approach is demonstrated on the problem of wiping a table,
but can be used for many typical problems in service and

ment using a torque-controlled manipulator;

providing a trajectory generator (as an alternative to
usual trajectory interpolation), which can combine
these primitive movements to a smooth trajectory and
which reacts adequately to external disturbances. Such

household robotics. disturbances could be obstacles or humans which may

interact with the robot during execution;
« developing an algorithm which allows automatic
movement generation from the taught primitives;
execution of the entire task in a realistic environment,
using the same manipulator, in order to validate the
approach and test the required robustness and reactiv-

I. INTRODUCTION

While most present-day applications of robots are still
restricted to industrial environments, the field of service
robotics has a huge potential for growth. The development *
of lightweight arms and hands as well as the progress in
robot navigation systems (mobile platforms) on one side,
and the development of advanced humanoid robots on the Ity-
other, provide the hardware premises for a break-through Most of the previous work on this topic tries to solve
in this field. Increased sensor feedback capabilities (forcesnly small portions of the overall problem. In [3] the
torque, visual, tactile, etc.), and the growth of computfocus is on the combination of primitive tasks, yet no
ing power give the possibility to react more flexibly onlearning or autonomous problem-solving is available. Work
changing environments. But providing the robots with aron learning focuses mainly on learning a subtask or on
appropriate degree of autonomy which makes them ableow to decide which part of the demonstrated information
to use these basic reactive features, as well as providirig relevant or how to construct a neural oscillator [4], [6],

a simple and efficient human user interface, are still verj14], but no autonomous task-solving has been applied.
challenging research topics. Especially the robot prograni8]-[10] Present a more complete solution for learning a
ming task, done by the—often technically unskilled—userpoint-to-point or repetitive movement and generating it in
has to be as simple as possible. In this concept, prograra-very flexible way. However, primitive movements are not
ming by demonstration is a widely accepted paradigmcombined in order to solve complex tasks. In [11] a similar
The usual approach, in which the human demonstratessgstem (with neural oscillators) is used to generate biped
complete task and the recorded trajectory is followed by thevalking patterns. Another problem of programming by
robot, would certainly lack the flexibility needed to survivedemonstration is presented in [5]—the demonstrated task
in common household environments. These environment&s to be analysed for its relevant actions and segmented
have a continuously changing, complex structure. accordingly to ensure a general knowledge of how to solve

A possible solution is the use of small motion primitivessuch a task. Yet this is a quite different problem from
which the user teaches to the robot. Equipped with ththe one presented in this paper, where the intention is to
appropriate algorithms, the robot uses these primitives ibombine rhythmic movements to a task more complex than
combination with sensory input to accomplish a familypick-and-place operations. In [2] movement primitives are
of complex tasks. In this paper, we demonstrate suchsed to navigate a marble through a Marble Maze. Focus
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lies on learning the combination of movement primitivesmodified (e.g., scaled, translated, or rotated) without dis-

(such as “move marble away from wall”) to successfullyturbing the stability of the whole system. To ensure a

navigating the marble to its goal. No unforeseen externalmooth trajectory, a first-order filter is used. The difference

interaction occurs. between the desired and the actual robot position slows
The first part of our paper (section Il), which handlesdown the oscillator, and therefore the generated movement

learning the movement primitives and the trajectory genis slowed down in turn.

eration, is based on the results from [8]-[10]. Herein, a However, the presented system has some disadvantages.

novel approach for learning and generation of rhythmidn the following we will describe the system taken from

movement patterns is presented. In contrast to this af8] and introduce some our modifications to solve these

proach, however, we have reduced the complexity whileisadvantages.

maintaining its flexibility. Learning is achieved by using a .

sum of weighted Gauss kernels which maps a centralisétt 1he oscillator

oscillator signal to the desired movement. To increase the For determining the progress of the learnt movement

required robustness of execution, the difference betweearimitive, [9] suggests the following nonlinear oscillator:

desired and actual robot position is used to slow down

i : s = — L (B Ey)z— k2 @)
the oscillator and hereby delay further generation of the Z= Eo( 0)z U,
trajectory. Thus the system is able to cope with external . } )
disturbances or slows down if the robot cannot follow the U=z [1 + au(y —y) ] -1, (2)
trajectory with the desired velocity. 2 42,2

The second part of the paper (section Ill) presents \é\"th E(u,z) = % + *5= as the actual energy of the

method to autonomously combine the learnt movemenqzzlgzt?;ifoa;%eagii'gegeg;:gagﬁ’te tzznd?slljreegofeanr?;-
primitives in order to solve the given task. An algorithmg ’ quency.

. D : measured ang the ordered robot positiorx, u € R Are
to cover the entire surface by primitive movements is pre- . : "

. . AL . . “state variableswx,, Is a scaling factor for the position error
sented in section IlI-A, while finding an optimal execution

order of this movements is addressed in section ”I_Bf_eedback. High values far, or high position errorgg —y)

Finally, experimental results are presented and discusse(clj raw i towards zero and therefore stop the oscillator. For
Y, & P a =0, Egs. (1)—(2) reduce to a second order system with

the variable dampingl = u(E/Ey — 1). It follows that

d < 0 inside the limit cycle and! > 0 outside, so that the

circle E = E, becomes an attractor. Fig. 1 illustrates the
In this section we present the structure of the trajectorgonvergence to the limit cycle of the proposed oscillator.

generator for the entire movement, as well as how the

movement primitives are represented in the system. 15
The trajectory generator should reproduce the recorded

trajectory with the desired degree of flexibility and be

Il. LEARNING AND GENERATING RHYTHMIC
MOVEMENTS

1t

able to combine these primitives to a smooth movement. 05}
Therefore it should have following features:
0
« it should be possible to stop the generation at any £
point of movement; 05

« the learnt movement should be smooth in order to
appear more natural;

« to enhance smoothness between transitions from one A5 L
primitive movement to another, a dynamic interpolator
. . . . . -2 I I L
to a moving goal is needed. This is also useful if 45 -1 05 0 05 1 15

the robot is displaced by external forces from the
trajectory (e.g., by a human pushing it away), and hasrig. 1. The oscillator proposed in [9]. It can be clearly seen that the

to return smoothly on the path after the disturbance circular limit cycle is an attractor. The plot is drawn fgr— y = 0,
Eo = 0.5, k =27, p = 10, and o, = 200.

disappears;
« the speed of the movement must be adjustable (e.g.,
to cope with dynamic constraints of the robot). The driving signal¢ for the learning function in sec-
Most of these demands are met by the system developdi@n I-B is generated by using atan2:
in [8]-[10]. There, an oscillator that can be slowed down ¢ = atan2z, ku). 3)

by an input signal is used as a control policy. This control

policy allows the generation of the desired movement thathis converts the oscillator statesand z into a toothsaw-

is time-invariant, and also allows a rudimentary reactiorshaped signal. However, this oscillator is not able to stop
on disturbances. The oscillator signal is used as a drivingqually distributed over the interval defined by the driving
signal for the weighted sum of Gauss kernels in ordesignal. Since only: is driven to zero by the position error,
to generate the basic movement, which in turn can bthe oscillator will continue to move untit is also zero.
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This means that up to a half rotation may be performed. Finalisation

beforez reaches 0 and ceases to change. The function f computed in Eg. (6) describes the

To enable a immediate stop at any point of the movegenerated position, which still has to be transformed (i.e.,
ment, we introduce a simpler oscillator that directly gentranslated, rotated, and scaled):

erates a toothsaw-shaped signal:

f=H7 (7)
B = ¢; + m —— (4) with H being a homogeneous transformation matrix.
L+ (ol f = gl)ke Thereforef denotes the desired position.
To ensure a smooth trajectory, a second-order filter is
bire = { 2 if ¢; <1, (5) applied:
K3 - / . . rs
¢; —1, else §+ayy+ By(y - f) =0, (8)
where f is the desiretland j the measured positiomy, ~ Where d k
And k4 are fine-tuning constants;, defines a low reaction oy = g By = g 9)

zone andkg > 1 the order of the braking effect. The _ .
slopes of the oscillator signal are in the ranger). With d as dampingmn as mass and as spring constant. By

By design, this simpler oscillator has no problems with”smg a filter instead of an extra trajectory interpolator (e.g.,

slowing down; Fig. 2 shows a direct comparison of theBézier splines) our system includes the possibility to move
breaking performance of the both oscillators towards a moving goal, while with an extra interpolator this

would be difficult to achieve.
An additional feature of the presented system, which

C generates rhythmic movements, is the fact that it works

08 Z for an arbitrary number of degrees of freedom (DOF). The
P ] oscillator acts as a centralised control policy to synchronise
04 ] the different DOFs, while every DOF is handled separately
02 ‘ . ] thereafter, by having one approximator (6) per DOF. Our
0_1 _0'5 (') 0'5 ; table wiping scenario requires only 2 DOFs, as the region
e is planar and we are using Cartesian impedance control for

the robot.

Fig. 2. Breaking performance. Both oscillators (a is the original one as Fig. 3 shows the structure for multiple DOFs.

_ proposed in [9] and b is our) get a complete stopping signal
(If— 9| = o0) at time 0. As can be clearly seen, the signal of b halts P 7
immediately, while the original oscillator a may need some time to react. / @O ;'A”D 1 L <
. _ MV : :
Notice that the convergence property of the oscillator of \ _ /
Egs. (1) and (2), which is not present in Egs. (4) and (5), @o A A»Df“ L %
is not truly exploited in [9]. The smooth convergence to

the desired trajectory is obtained instead by a linear filter, @
similar to the one mentioned in section II-B. Fig. 3. How to enhance the presented system to multiple DOFs.

N

y

B. Learning a primitive movement
gap Our system, adapted from [8]-[10], demonstrates an

We approximate the movement by a sum of Gausexceptional robustness. The generated movement can be

kernels for each degree of freedom independently: disturbed in any way, which results in the oscillator stop-
ping for the duration of the disturbance—without losing
al 1 significant parts of the desired movement. Even if the
e . - PR . 2 b
I= ;wl P { 2(@ hi9) } ' ©) trajectory cannot be followed by the physical robot (e.g.,

the robot is too slow or there are obstacles in its way), our
The parametersy;, ¢;, and h; have to be determined system adopts quickly to this constraint and changes the
to optimally fit the movement. Many methods exist; wepath-generation accordingly.
have chosen to use the Fletcher-Reeves-Conjugate-Gradient
optimisation methods, since it exhibits excellent results
after only few iterations.

Il1. BUILDING A COMPLEX TASK FROM LEARNT
MOVEMENT PRIMITIVES

The parameterisation of the primitive movementsuin In the previous section we have introduced a system to
primitives [10]. by demonstration. We will now show how we can com-

bine such primitives to autonomously construct a complex

1we have chosen the desired positjpinstead of the ordered position movement, e.g., in order to wipe a co.mplete table. Contrary
v, to ensure a trajectory as near as possible to the planned. to approaches where the whole task is taught, our two-stage
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approach allows us to solve various different tasks withoubllowing error:
requiring further operator interaction. For instance, we can

. L if i — n
wipe any area of the table, as dirt is detected by a camera, _ i, ' Dig 0 and 2
) . err ; =4 da(pi; — 1), ifp;; >0andR (10)
or clean windows or arbitrary surfaces. ds it 1
1,7

The presented system has been implemented and tested -
on the Light-Weight-Robot Il (LWR-II), a 7-DOF robot With R denoting the inside of the wiping region attlits
arm developed at the Institute of Robotics and Mechatrorputside. We have empirically chosen the constaits: 20,
ics of the German Aerospace Centre (DLR). In this particd2 = 1, andds = 5. The sum over all these per pixel-error
ular approach, the LWR-II runs with Cartesian impedancevalues defines the following global error function:
control [1], which allows us to interact with the robot arm
by grasping and holding it during motion. In the teaching ERR= Zem’j‘ (11)
phase, the Cartesian stiffness for translational directions is I
set to zero, while the orientations are kept stiff. During® Perfectly filled region has the error value of ERRO,
the execution phase, all Cartesian stiffness values are high}d the value of ERR increases with more overlap and
except for the normal direction to the surface. This valuainfilled areas. The cost to compute ERRGgm n?),
is zero and the robot is commanded to exert a constaMtith m being the number of wiping movements and
desired force in this normal direction. Since the impedanc&e segmentation in each of the two possible directions.
controller is implemented based on measurements of joint Every primitive wipe polygon is determined by its po-
torque sensors, every collision along the structure of théition (z,y) in the wipe region, its rotation angle, and its

robot, not only at the tip, is detected and slows down ofcaling factor (which was typically chosen between 0.9 and
even stops the movement. 1.3). A further free parameter of the system is the number

In order to solve the given task, we define the following¥ °f Polygons used.

sub-tasks to wipe a table from recorded motion primitives; Ve Use simulated annealing with a linear cooling scheme
to find an optimal solution within thé N + 1 parameters.

A fill the wiping region with primitives, according to The quality of the resultant solution depends on the fine-

several optimali'Fy constraints; ness of rasterisation as well as the cooling scheme; the
B compute an optimal path; slower the system is cooled, the lower the energy of the
C execute the plan. found solution is expected to be. Both factors are limited by

the available computing time; a wiping robot taking longer
than a few minutes to compute its solution is hardly useful.
A. Filling the wiping region
B. Optimising the movement plan
In order to wipe the whole table, the primitive wipe To ensure an acceptable wiping-time and a naturally
operation must be distributed over the area with as "tt'(ﬁ)oking W|p|ng movement, we use a heuristic to search a
overlap as possible, while not leaving out any part okhort path over the centres of the wiping-movements. This
the wipeable region. This planning problem has some similar to the Traveling-Salesman problem, and many
similarities to cutting or packing problems (e.g., [12]).viable algorithms exist. Since this particular task is not very
The fundamental difference, however, is that in our Casgomp|ex and the number of p0|ygons in a W|pe region is
minimal overlap is allowed (and even required), whereagmited, we decided to use the*Aalgorithm.
leaving out parts is strongly penalized. A* (e.g., [13]) is a modified breadth-first search (BFS)
For reasons of simplicity we assume that the whole arethat utilizes a heuristic to estimate the distance from
that is described by the convex hull around the primitivehe current to the goal state. Using a greedy approach,
wipe operation is also covered by that operation. Thusnly the shortest path is expanded at any time. As long
this region can be exhaustively described by the polygoas the heuristic underestimates the real distancésisA
described by it. The whole table can then be considered guaranteed to find the shortest path, as BFS would.
be wiped when the primitive wipe polygons are optimally For the heuristich we choose:
dlsglbu.ted on the. table.. o o - h=~ 0|, (12)
inding the optimal distribution of primitive wipe poly-
gons on the table is an NP-problem, meaning that finding with |O| as the number of open nodes ana@s a distance
solution to this problem grows non-polynomially with the estimator that has to be set accordingly. One problem with
number of polygons. Rather than following this path, inA* is that it requires a large amount of memory (up to
order to find a solution in a reasonable amount of time w&®(N!) for a badly choseny ~ 0, where N denotes the
follow the following heuristic. We rasterise the wipeablenumber of nodes), but overestimating the distance (and
region in, e.g., 100100 segments gpixels. The primitive  hence turning A into an A) results into a sufficient short
wiping polygons are drawn on this region using standargath while memory usage is cut down significantly.
drawing algorithms (c.qg. the Bresenham line draw and line Future work will include an optimisation over the start-
scan fill), while it is counted irp; ; how often a segment ing and end points of the movement primitives, perhaps
at location (¢, 7) is drawn into. We can thus define the even the directions of the starting and end points will be

3498



learned ——
orginal -

1650

" T
desired position --—----
ordered position

measured position

region

1600 -

Fig. 4. Example for a short path over the centres of the primitive 1550 -
wiping movements (displayed by their convex hull).

X in mm

1500 |

1450 - . | %

1400 |

1350

I I I
-1400 -1300 -1200 -1100 -1000 -900

learned —
Shgmal —— 08 -

06
1650

- T
desired position --—----
ordered position

measured position .

region . oo =S
¥

04

breaking factor

02

1600 -

0 100 200 300 400 500
time*0.06s

1550 -

1500 - 7
/

X inmm

Fig. 6. Recorded movements (middle) from an example run with
zigzag movements (top). In contrast to the roundish movement (see
Fig. 5) the breaking factor indicates that the impedance controlled robot
) has quite a problem to follow the zigzag movement with the given

**** - 1 speed. Yet the wiping plan is executed satisfactorily.

¥
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1400 - %

1350

anteed by the second-order filter. Additionally the maximal
velocity is limited. The positional erraos|f — §])*¢ (see
Eq. (4)) stops the oscillator whenever external influences
cause the robot to do so, so that no significant part of the
1 next movement primitive is lost. It can be clearly seen from
0 100 20 400 500 Fig. 5 that the breaking factor slows down the trajectory
Ime”0.06s . . .
generation whenever a new transformation Matkx is
Fig. 5. Recorded movements (middle) from an example run with applied.
roundish movements (top). Especially interesting is the breaking factor The roundish movementis no problem for the impedance
(see Eq. (4)) as the spikes are indicating the switching to a new . .
transformation Matrixf. It is evident that the roundish movement ~ CONtrolled robot to fO."OW_'n contrast to the zlgzag-
primitive can be easily followed by the robot. movement shown in Fig. 6. Although there the oscillator
is almost always slowed down, the actual trajectory of the
robot is still similar to the desired one, so the wiping action

included in the evaluation, to achieve an even more naturksi accurately executed.

0.8

0.6

0.4

breaking factor

0.2

impression. To demonstrate a momentary external disturbance, the
LWR-Il was simply gripped and moved away from its
C. Executing the movement plan ordered position while executing a movement plan similar

The filling (see section III-A) and the sequencing (sed® Fig. 5. Fig. 7 presents a part of the movement recordings.
section 111-B) together define theviping plan which, in As demanded, the further generation of the trajectory
turn, is executed by the system described above. ceases as long as the disturbance lasts.

The execution of the movement plan is straightforward.
Since the repetitive generation of the primitive movement
is generated by the system described in section Il, only a Further improvements would include an evaluation of
new movement transformation matriX has to be used in genetic algorithms (GA) for optimising the wiping layout,
Eqg. (7) whenever the oscillator (Egs. (4) and (5)) takes itsince GAs should be able to evaluatén?®) layouts per
backward step. Smoothness of the trajectory is still guaevaluation-stepr( denotes the size of a generation, see [7])

IV. FUTURE WORK

3499



1650 -950
1000 |
1050 |
1100
1150
1200 1
1250 [
1300 |
1350 [
1400 |

-1450 L
200 0

1600 [
1550 -

1500 -

xinmm
yinmm

1450

1400 -

1350

L
80 120 160
time*0.06s

L P
80 120 160 40
time*0.06s

P
0 40 200

Fig. 7.

x andy recordings of a roundish movement with a momentary

disturbance around time 80 — 100. Clearly you can see how the further

trajectory-generation ceases for the duration of the disturbance.

in contrast to Simulated Annealing which can evaluate only

one per step.

Furthermore different path optimising algorithms wil
be evaluated, especially randomised ones, as they al
suboptimal solutions to be generated. In a demonstrat
scenario computing time is always short, so it is mo

I
low
ion
re

important to find a quite good, yet suboptimal solution
than waiting for ever for the perfect solution. Randomised
Algorithms (such as GA) are able to deliver this—like our
A* by decreasingy. Also path optimisation should also
consider the start- and end-points of the wiping primitive
and preferably also the directions of these. Randomised

algorithms should also be able to cope with this matter.
Another interesting aspect would be the extraction

(3]
of

one primitive wiping movement out of a continuously 4]
demonstrated wiping action, as we (humans) are better abl%

to generate a sequence of rhythmic movements rather t
just exactly one—so this is an ergonomic issue.

han
(5]

Eventually the robot will be enhanced to 10 DOFs

(LWR-Il on a moving platform) so the area it can reac
will be greatly enhanced. Furthermore, the system must

h
béfl

enhanced such that non-wipe zones are taking into accourp;

in the planning phase.

V. CONCLUSION
An approach for teaching and solving complex tasks

(8]
in

a service robotics scenario has been proposed. The huma#i
teacher demonstrates simple movement primitives by guid-
ing the robot by the hand. The system first learns these
movement primitives, then combines them autonomousii0l
to a complex movement plan. The idea is exemplified in an
application in which the robot has to wipe a surface which
is specified online. A major advantage of the proposetl

approach is the ability to cope with temporary disturbanc
and to adapt to robot limitations.
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