The locally linear Nested Network for robot
manipulation

P. van der Smagt and F. Groen and F. van het Groenewoud

Abstract— We present a method for accu-
rate representation of high-dimensional un-
known functions from random samples drawn
from its input space. The method builds rep-
resentations of the function by recursively
splitting the input space in smaller subspaces,
while in each of these subspaces a linear ap-
proximation is computed. The representa-
tions of the function at all levels (i.e., depths
in the tree) are retained during the learn-
ing process, such that a good generalisation
is available as well as more accurate repre-
sentations in some subareas. Therefore, fast
and accurate learning are combined in this
method.

The method, which is applied to hand-eye
coordination of a robot arm, is shown to be
superior to other neural networks.

I. INTRODUCTION

In our research, we concentrate on the pick-and-
place task in the kinematic domain. The system
provides information about the angles of the robot’s
joints (measured through joint angle sensors) and a
pixel array available from a single camera mounted
in the robot’s end-effector. This placement of the
camera increases visual precision when the robot’s
hand is near the target and avoids problems of oc-
clusion and pixel correspondence. The position of
the target, as seen by the camera, together with the
joint angle information of the robot is used to gener-
ate a joint angle rotation with which the robot must
reach the target.

Traditional robot control is based on precise mod-
els of the sensors, the robot, and the environment
which together constitute the control problem. Us-
ing these models, typical tasks such as pick-and-
place and object avoidance can be completely anal-
ysed and solved. However, when robots intervene
with changing environments, static models are not
sufficient anymore, but must cope with adaptations

The authors are with the Department of Computer Systems,
University of Amsterdam, Kruislaan 403, 1098 SJ Amster-
dam, The Netherlands, fax +31-20-525-7490, phone +31-20-
525-7524, email smagt@fwi.uva.nl

of the robot (such as wear and tear) and its sensors
(e.g., calibration and re-calibration). Also, unavoid-
able errors due to discrepancies between the model
and the machine must be corrected.

Neural adaptive robot controllers that have been
previously proposed either suffer from long learning
times or from a less precise approximation. For ex-
ample, Kohonen networks as initially proposed by
Ritter et al. [3, 4] can get a precision of around
0.5 cm in the end-effector position in a few feedback
steps, but need thousands of iterations to attain rea-
sonable results. The use of a single feed-forward
network trained with conjugate gradient back-prop-
agation has been shown to give fast and highly adap-
tive approximation of inverse kinematics functions,
but a large number of feedback steps is needed to
get high-precision results [9, 7]. Differently put, lo-
cal representation methods attain high precision but
need many learning samples (which are expensive to
get for a real robot system), whereas global approxi-
mations can quickly establish reasonable overall ap-
proximations but the final result will be coarse; also,
parallel implementation is more cumbersome.

In previous work, we have combined global and
local representations in a method called the nested
network method [8, 2]. The approximation starts
with a global map in the form of a fast-learning
feed-forward network, but as learning proceeds lo-
cal maps will be built in a tree-like structure where
needed. This method has been shown to be very eco-
nomic in its use of learning samples; however, the
training of a large number (approximately 100) of
feed-forward networks consumes considerable com-
puting power. In this paper, we further investi-
gate the method by use of local linear approxima-
tion instead of nonlinear feed-forward approxima-
tors; learning cost is then independent of the amount
of information already gathered.

Control structure The method presented in this
paper is applied to learning the hand—eye coordina-
tion for a simulated six degrees of freedom (DoF)
anthropomorphic robot arm called the OSCAR-6

robot; see figure 1. The reach space used in the ex-

01 : rotation of base
04 : rotation of lower arm

0¢: rotation of wrist

Figure 1: Structure of the OSCAR—6 robot.

Figure 2: Reach space of the OSCAR—6 robot.

periments is shown in figure 2. By keeping the
camera, which is mounted in the end-effector of the
robot, always looking downwards, we have restricted
ourselves to a 3 DoF system which suffices for many
industrial applications (e.g., performing pick-and-
place operations). Also, it places such restrictions
on the image processing software that object posi-
tion identification can be realised in real time (i.e.,
object identification within the time needed for grab-
bing one image frame). Since visual observation is
ego-centered, we have chosen to control the robot
with delta joint values, i.e., rotations from the cur-
rent state of the robot.

The aim of our system is to get the object with
known dimensions in the centre of the camera im-
age at a predefined size. Given a current state of
the robot § = (f2,03) and the object position ¥ =
(z,y,A) where A is the observed area of the object,
extracted from the camera, the network must gener-
ate delta joint values J = (Afy, Aby, AB3) to reach
the object position. Note that the value of the 6,
is not necessary as network input. From the joint
and camera information input samples to train the
control system can be constructed using an input-
adjustment method [5].

II. THE NESTED NETWORK METHOD

In this section we will highlight the principal com-
ponents of the nested network method; see also [2].

Methods used for continuous function approxima-
tion usually allow their user to specify a ‘smooth-
ness’ parameter. Such a parameter is determined
based on a priori knowledge of the function at hand,
while overfitting due to noise must be prevented.
Especially for one-dimensional fitting problems, such
approximation methods are very advanced and suc-
cessful.

However, such methods never scale to approxi-
mation of functions of high dimensionality. It is in
this field that ‘black-box’ approximations with neu-
ral networks have proven their worth.

However, it is important that the approximator
realises a more ‘smooth’ function where the gradient
of the data does not vary too much, while being flex-
ible in other parts. In the nested network method,
we realise this by maintaining multi-resolution rep-
resentations of the data. At the lowest resolution, a
single hyperplane is set to ‘approximate’ the data so
as to realise a minimal summed squared error. At
the highest resolution, the data points themselves
are available; on intermediate levels, linear interpo-
lations of the data are created for subspaces of the
entire input space.

Suppose the method is used for approximation
of a function of n variables. Initially, the approx-
imation is done only by the root node. Incoming
learning samples are assigned to one of its 2" sub-
spaces, which are obtained by dividing the input
space for this node in two halves along each dimen-
sion. Using incremental update, the linear approxi-
mator is adapted by each learning sample assigned
to it. When, however, in one of its 2™ subspaces, the
average error in approximation exceeds a threshold,
a new node is created which is subsequently repre-
sentative for this subspace.

This process of splitting up will be repeated until
for every part of the input space the desired approx-
imation precision is achieved. This process can be
compared with the first part of the well-known split
and merge process as used in image processing, as
first mentioned in [1].

A second requirement is that we want to have a
very flexible system, able to adjust itself to changes
in the system. This means that from the moment
that the representation as constructed in the tree
does no longer match the measured system (i.e., the
learning samples are no longer represented by the
existing feed-forward networks), the tree has to be
chopped down. This can be achieved by a merge
process. During this process learning samples from
the ‘old’ environment have to be thrown away to-

gether with the corresponding linear interpolators.
In fact, the learning process has to be restarted, de-
pending on how much the system has changed.

Figure 3 shows the network nodes of a partly con-
structed nested network over a two-dimensional in-
put space.

In our nested network approach, the input space
of an n-dimensional function that has to be approx-
imated, can be recursively divided in 2" subspaces
until the desired fragmentation is attained for the
storage of the input samples. This is done by halv-
ing the subspace in each of the n dimensions know-
ing for each dimension its minimum and maximum
value. Now any of the subspaces can now be found
in at most d steps with d the recursion depth (the
recursion depth is equal to the maximum depth of
the tree). We restrict the immediate subspaces of a
node to be of equal size for reasons of implementa-
tional facility only.

A. Tree creation

The system builds an internal representation of the
high-dimensional tree. A node in the tree represents
a subspace of the input space U.

Index. Let us denote an index as a natural num-
ber such that

0 < index < 2inputdim (1)

where ‘inputdim’ denotes the number of dimensions
of the input space. In our case, index ranges from
0 to 31 inclusive. Each node in the tree can have
at most 32 children, each representing an equally
large subspace of U. A child of a node is uniquely
identified by its index.

Bin. Learning patterns are stored in bins. Each
bin is uniquely defined by an array of indices i1, io,

.-, imaxdepth, Where ‘maxdepth’ denotes the maxi-
mum depth the tree can reach. This way, a bin rep-
resents a small subspace of the total input space U.
Learning patterns will be stored in the bin that can
represent them. If a bin does not yet exist for a par-
ticular learning pattern, it will be created. Hence,
no more bins than learning patterns can exist.

Node. The tree is built up out of nodes. A node
is able to approximate the subspace it represents. A
node can be uniquely identified by its depth and an
array of indices. It has a pointer to its parent node
(except for the root node) and up to 32 pointers to
its children.

Split. A node is split when the error the node pro-
duces is higher then a user defined threshold value.

The error of a node is defined as follows:

patterns

Enode = Z Epattern,i (2)
=0

while the error of a single pattern is the summed
squared one, i.e., the Euclidian distance between the
desired and the actual end-effector position.

Each node has a linked list of bins attached to it.
Only bins that represent a part of the input space
that the node represents are linked to that node.
Initially, all bins will be linked to the root node.
At that point, the root node represents the entire
input space U. This is a coarse approximation and
the root node will soon be split because the error it
produces is relatively high. Before that, all bins are
linked to the root node and subsequently all learning
patterns are stored in those bins. As soon as a split
occurs for one of the 32 subspaces of a node, a new
approximator is created. Then the parent node is
searched for bins that fall the new subspace of the
U. Those bins are unlinked from the parent node
and linked to the new child of the node that was
split. Then the node is learned with these patterns.

III. SIMULATION RESULTS

For the feed-forward networks presented in the sim-
ulations, networks with five hidden units each were
chosen. The networks are trained with conjugate
gradient optimisation [6].

The maximum depth that the tree is allowed to
grow should, theoretically, be infinity. However, due
to the finiteness of computer memory, a value is cho-
sen higher than the maximum depth the tree (i.e.,
the deepest network node) would reach in a typical
run. In our case, we set the maximum depth to six,
which proves to be sufficient for our purposes.

A. Motor babbling

In order to give the nested network the chance to
learn the function, an exploratory phase is required.
After all, if the network starts with random weights,
it is likely that it will always generate very similar
robot commands, which are subsequently reinforced
since they constitute new learning patterns: the in-
put space will not be explored. A solution of this
problem is to perform some random movements, and
train the network with the corresponding learning
samples. It will now be able to generate movements
in different directions and the input space can be
explored.

The robot has to reach its target position within
a precision of 1 mm. A maximum of 20 feedback
steps is allowed. While the robot is moving, camera
and joint encoder values are measured, and stored
as learning samples in the tree. Figure 4 shows the

APPROXIMATIO

d=0

.\<O>

d=1

<0,2>

d=2

<0,1>

Nomenclature of quadrants:

[11]=3/,r"'

71007 =0

Figure 3: Example of the subdividing of a two-dimensional space U. FEach space can be divided into
four equally sized parts. If no further subdividing exists the best possible approximation for that specific

subspace is reached.

grasping error in cm. when the robot is allowed to
make three (two feedback steps) moves. The most
notable feature is the attained speedup compared
to the feed-forward network implementation, while
keeping the precision at the same level.

We compare the grasping error attainable with
the nested network with those attained with a Koho-
nen and a single feed-forward network. A Kohonen
network builds up a local representation of the reach
space of the robot. Each neuron in the network has
a small receptive field, in which a Jacobian is re-
sponsible for a locally linear representation. Thus,
the attainable accuracy should not be worse than
that obtained with our method. From our simula-
tions we found that the network reaches a precision
of around 0.5 cm with two steps towards the target,
but needs many learning steps to get this result 6.

Conversely, a single feed-forward network builds
up a global nonlinear approximation by a summa-
tion of sigmoids. It is therefore expected that a
coarse approximation is very quickly attained (using
a conjugate gradient algorithm), but the final accu-
racy will be not so good. This is shown from the
simulations: the feed-forward network approach ex-
hibits fast learning but will get a lower accuracy (fig-
ure 7). Note the different scale in this figure.

IV. CoONCLUSION

We presented a method which can represent un-
known multi-dimensional functions from samples ran-
domly drawn from its input space. The system cre-

Kohonen
30 | distance/cm
25
20
15
10
first step
5 1
second step
0 2000 4000 6000 8000 10000
iterations

Figure 6: The grasping error for the robot trained
with a Kohonen network [2]. This curve has been
smoothed with a moving average filter of width 20.

ates a multi-resolution representation of the input
space using locally linear approximators. By using
linear approximations, the method is computation-
ally very cheap but still gives very accurate results.

When compared with feed-forward networks and

error Nested feed-forward networks

60

40

20

error Nested linear interpolators
cm i° T """""""""" [[

60
40

20

error error
s I T
o Mbbdti T i

processor time

Figure 4: Results of the linear interpolation method in comparison with the earlier presented results.
All graphs show the distance in cm. between the end-effector and the object after three steps (i.e., two
feedback steps). The nested feed-forward network and the nested linear network perform similarly well
when compared on the iteration number (top row). However, when compared on the processor time needed
for building the tree and learning the nodes (bottom row), the linear method is superior, being around 60

times as fast for the first 500 learning iterations.

Kohonen networks for the same task, this method of
high-dimensional function approximation is shown
to be superior in its economic use of learning sam-
ples, i.e., it generalises faster while also allowing
very exact representation.

REFERENCES

[1] C. Brice and C. Fennema. Scene analysis using
regions. Artificial Intelligence, 1:205-226, 1970.

2]

A. Jansen, P. van der Smagt, and F. C. A.
Groen. Nested networks for robot control. In
A. F. Murray, editor, Neural Network Applica-
tions. Kluwer Academic Publishers, 1993. In
print.

T. Martinetz, H. Ritter, and K. Schulten. Learn-
ing of visuomotor-coordination of a robot arm
with redundant degrees of freedom. In R. Eck-
miller, G. Hartmann, and G. Hauske, editors,

memory usage/Mb

100 o ‘
| P ”" nested linear ...

80 -

60 -

40 -

20 -

nested feed-forward

networks

280 i

240 -
i nested linear

200 -

160

120

80 b
: nested feed-forward

40 i

Figure 5: Memory usage (left) and number of nodes (right) for the nested feed-forward network method
and the nested linear perceptron method.

Feed-forward

distance/cm

100 - third step

80

60 {7

40 7

20 {7

00 T ,,,,,,,,,,,,, S R

0 100 200 300 400

iterations

Figure 7: The grasping error for the robot trained
with a single feed-forward neural network with 27
hidden units steps [7].

Parallel Processing in Neural Systems and Com-
puters, pages 431-434. Elsevier Science Publish-
ers B.V., 1990.

T. Martinetz and K. Schulten. A “neural-gas”
network learns topologies. In Proceedings of the
1991 International Conference on Artificial Neu-
ral Networks, volume 1, pages 397-402, Espoo,

[9]

Finland, 1991.

D. Psaltis, A. Sideris, and A. A. Yamamura. A
multilayer neural network controller. IEEE Con-
trol Systems Magazine, 8(2):17-21, April 1988.
P. van der Smagt.
training feed-forward networks.
works, 7, January 1994.

P. van der Smagt, F. Groen, and B. Krose.
Robot hand-eye coordination using neural net-
works. Technical Report TR CS-93-10, Depart-
ment of Computer Systems, University of Ams-
terdam, Amsterdam, September 1993.

P. van der Smagt, A. Jansen, and F. C. A.
Groen. Interpolative robot control with the
nested network approach. In Proceedings of the
1992 IEEE International Symposium on Intelli-
gent Control, pages 475-480, Glasgow, Scotland,
U.K., 11-13 August 1992.

P. van der Smagt and B. J. A. Krose. A real-time
learning neural robot controller. In Proceedings
of the 1991 International Conference on Artifi-
cial Neural Networks, pages 351-356. Elsevier
Science Publishers, Espoo, Finland, June 1991.

Minimisation methods for

Neural Net-

