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Abstract

Cerebellar models have long been advocated as viable models for robot dynamics
control. Building on an increasing insight in and knowledge of the biological cerebel-
lum, many models have been greatly refined, of which some computational models
have emerged with useful properties with respect to robot dynamics control.

Looking at the application side, however, there is a totally different picture. Not
only is there not one robot on the market which uses anything remotely connected
with cerebellar control, but even in research labs most testbeds for cerebellar models
are restricted to toy problems. Such applications hardly ever exceed the complexity
of a 2 DoF simulated robot arm; a task which is hardly representative for the field of
robotics, or relates to realistic applications.

In order to bring the amalgamation of the two fields forwards, we advocate the
use of a set of robotics benchmarks, on which existing and new computational cere-
bellar models can be comparatively tested. It is clear that the traditional approach
to solve robotics dynamics loses ground with the advancing complexity of robotic
structures; there is a desire for adaptive methods which can compete as traditional
control methods do for traditional robots.

In this paper we try to lay down the successes and problems in the fields of
cerebellar modelling as well as robot dynamics control. By analyzing the common
ground, a set of benchmarks is suggested which may serve as typical robot applica-
tions for cerebellar models.

Keywords: robot dynamics, robot arm control, computational cerebellar models, neural
networks

1 Introduction

For a long time, the field of robotics has been heavily dependent on advances in mecha-
tronics; typically, heavy robot structures with strong motors were necessary for accurate
positioning of payloads with relatively low weight. In recent years, however, the con-
tinuing development of new materials and of new drive concepts which are both strong
and light-weight have enabled the construction of robot arms with an impressive force-
to-weight ratio and which are very dextrous (e.g., (Hirzinger, 1996)).

The control of such robot structures, however, is problematic. Whereas traditional,
rigid, robots can be stably controlled due to the fact that each joint can be treated as an
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independent entity, stable high-speed control of a general dextrous robot arm with 6 or
more strongly interdependent joints is, to date, highly problematic. Despite continued
mini-successes in the analysis and modelling of the complex dynamic behaviour of such
robot arms, it seems that a solution which does not use adaptive control will not solve all
problems at hand.

Taking a look at nature, the cerebellum is a very likely candidate for solving these
problems. In the cerebellum, sensor signals combined with motor plans1 are used to
generate motor signals. An example is the vestibulo-ocular reflex: when the head or body
is moved, the cerebellum fine-tunes the motion commands for the eye muscles which
make the eyes fixate on the same point. Early medical research (Holmes, 1917, 1939) has
given clear indications that the cerebellum is used for stable vertebrate control; cerebellar
lesions lead to instability of the motor system.

Cerebellar models were first applied to robot dynamics control after Albus’ CMAC
model was published in 1975. Especially the later implementations by Miller et al. (e.g.,
1989, 1997) for control of a 4 DoF robot arm as well as biped control have demonstrated
the power of this approach. Albus’ model, however, is known to be an oversimplified
version of the biological truth: based on the BOXES approach by Michie and Cham-
bers (1968), it effectively implements an adaptive table lookup method with hashing-
based output smoothing. The CMAC has often been considered a function approxima-
tion model only, and can be compared with other general function approximation models
as such.

Although cerebellar modelling has come a long way since then, applications of such
models remain limited to toy problems, not exceeding the complexity of (simulated) two-
link arms. But is it at all reasonable to investigate such control systems for artificial robot
arms? In order to evaluate the applicability of cerebellar models for robot control, and
to suggest a better integration of cerebellar modelling and robotics, we investigate the
feasibility and propose a set of benchmarks containing typical robotics problems.

This paper is organized as follows. In section 2 we describe the current-day under-
standing of the biological cerebellum. Section 3 gives an overview of the field of robotics,
and the problem of dynamics control is more deeply discussed. In section 4 the two
fields are brought together: which problems could be tackled with computational cere-
bellar models? Is the desire for such an integration at all valid? In this section, a number
of benchmarks for cerebellar control are proposed. A discussion is found in section 5.

2 Biological motor control and the cerebellum

Throughout the ages the questions “What does the cerebellum do?” and “How does it
do it?” have received ample attention among researchers in various fields. One of the
earliest empirical investigations of the cerebellum were performed by the Greek surgeon
Claudius Galenus of Pergamum (131–201 AD), who in his early career taught medicine in
the Asclepion in Pergamum (currently I

¯
zmir), and later on worked as a gladiator physi-

cian and surgeon to Emperor Marcus Aurelius in Rome. From his surgical work he con-
cluded that the cerebellum must be responsible for muscle control.

It was Andreas Vesalius (1514–1564), with his skeptical investigations of Galenic the-
ory, who questioned ancient medical knowledge and published his De Humani Corporis
Fabrica Libri Septum with detailed anatomical studies. From then on, the structure of the

1A motor plan or program is a sequence of muscle commands that can be executed without feedback,
using the correct timing, e.g., speech, playing golf, etc. In robotics, the term desired joint trajectory is com-
monly used.
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Figure 1: The cerebellum functions as a feedforward filter.

brain was gradually discovered. Detailed investigations of the cerebellum as the mo-
tor control centre began with Bell (1811), who proposed that motor fibers originate from
the cerebellum; an assumption that was later verified by Flourens (1824). From various
wartime studies, Holmes (1917, 1939) concluded that the cerebellum operates as a filter
on motor commands originating from the cerebrum, correcting on previously issued mo-
tor commands. In his theory, the cerebellum has the function of a comparator. A very
comprehensive study of the cerebellum, which subsequently formed the basis of many
models, was published by Eccles et al. (1967). His work, and the subsequent book by
Ito (1984), has influenced many of the subsequent cerebellar models.

2.1 Structure

The cerebellum functions as a feedforward control center for the motor commands orig-
inating in the cerebrum (Figure 1). Containing learned models of the skeletomuscular
system, it provides timing control of opposing muscles, and force as well as stiffness
control.

2.1.1 The spinal cord

The spinal circuitry provides independent control of muscle length and joint stiffness
(Bullock & Contreras-Vidal, 1993). Fig. 2 depicts this part of the the neuromuscular con-
trol system. The length of the muscle is sensed by neuromuscular spindles that consist of
specialized intrafusal muscle fiber. This (Ia) afferent feedback

�����
is sent to the � -neurons

in the spinal cord as well as to the brain. The muscle is contractive in response to efferent
feedback from the � -neurons. The feedback enables the spindle to keep its tension within
efficient operating limits to ensure optimal sensitivity.

The Golgi tendons consist of afferent fibers at the end of the muscle, and sense mus-
cular tension (Ib afferent feedback). This feedback of the agonist inhibits � -efference of
the agonist but excites the � -efference of the antagonist.

The muscle actuator is represented by the transfer function�	��

����������

� ��� ����
�����������

� � ��
����
(1)

The internal length
�

of the muscle is a function which is related to the change of efferent
nerve excitation

��� �
from the � -neuron and the force

�
acting on the muscle. The trans-

fer function
���

and
���

depend on the muscle stiffness, the muscle damping, an elastic
component serial to the muscle, the combined mass of the limb and interface element,
and the spring constant of the interface.
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Figure 2: Simplified model of the upper limb control system (Reprinted with permission
from (Koeppe, 2000)).

2.1.2 The cerebellum

The human cerebellum (see Figure 3) consists of about 10 million Purkinje cells (pc), each
receiving about 150,000 excitatory synapses via the parallel fibers (pf) (Larsell & Jansen,
1972; Zagon, MacLaughlin, & Smith, 1977; Linden, 1996). The pf are the axons of the
granule cells; these cells are excited by the mossy fibers (mf) originating from the spinal
cord, the cerebrum, and the brainstem. Each pf synapses on about 200 Purkinje cells. A
Purkinje cell receives further excitatory synapses from one single climbing fiber (cf); this
can fire a cell when active. Basket cells, being activated by pf afferents but also inhib-
ited by pc, can inhibit a Purkinje cell, thus ensuring activation of a single pc within a
local neighbourhood, and are only found in birds and mammals (Ito, 1984). Stellate cells
are similar in form and function to basket cells. Lugaro cells, the function of which is
currently unknown, are found in the granular layer. Having elongated cell bodies, they
receive input from pc, while their axons extend in the molecular layer. Finally, Golgi cells
receive input from pf, mf, and cf. They inhibit granule cells.

The granule cells operate as pattern separators. The densely ‘coded’ patterns, origi-
nating from the spinal cord, have to be ‘preprocessed’ by the granule cells, such that the
Purkinje cells can discriminate them. The output of a Purkinje cell is an inhibitory signal
to the cerebellar nuclei.

The cerebellar cortex is divided in three layers: the outer synaptic layer (also called
molecular layer), the Purkinje layer, and the inner receptive layer (the granular layer).
The cortex appears to be organized in cortico-nuclear microzones (Figure 3); each of these
microzones contains the parameters for a certain movement (Ito, 1984). The output of the
microzones originates in the pc, and flows to the nuclear cells.

Mechanistic models of the cerebellum did not appear until the paper by Braitenberg
and Atwood (1958). Braitenberg (1961) primarily interpreted the cerebellum as a timing
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Figure 3: Major components of the structure of the cerebellum. An arrow indicates an excitatory
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organ; in his theory, the pf have the functionality of delay lines.
Influenced by Eccles et al. (1967), two other early models by Marr (1969) and Al-

bus (1971) view the cerebellum as a learning pattern recognition system. Their more
detailed models, as well as a subsequent computational model by Albus (1975), have
contributed to a wide acceptance of the pattern recognition theory.

2.2 Learning

A major contribution of the papers by Braitenberg, Marr, and Albus consisted of a the-
ory of how learning in the cerebellum takes place. We know that the cerebellum learns
sequences of voluntary movements as well as motor programs, but also adapts to exter-
nal influences. Fortunately, the regular structure of the cerebellum has aided in a good
insight in how learning takes place. The key issue is that learning is context-driven. In
Marr’s theory, pf synapses on pc are strengthened when simultaneous activity of the cf
and pf occurs. Thus memory traces are stored at the pf synapses. Albus later suggested
that the cerebellum functions as an adaptive pattern classifier, where the pf synapses be-
come weaker; the cf signal is thus interpreted as an error signal. When active, the rate of
change is given as

�325476984 2 �;:=< 8 �?>�@BA?CED F�G9:H>.D IJ@BA?CED F�GK� (2)

where
�32

is the time constant, 6=8 the value of the L th pc/pf synapse,
< 8 the firing inci-

dence at the L th pc/pf synapse,
>

the firing frequency of the active or inactive pf. This
hypothesis summarizes the combined Marr-Albus theory.

The adaptation of pf synapses is called long-term depression (LTD). Next time around
that the same pattern appears at the pf, the Purkinje cell will not fire and thus not inhibit
its corresponding deep nucleus. Verification of LTD at the pf synapses followed in the
early eighties by Ito et al. (1982), who demonstrated that simultaneous stimulation of pf
and cf result in LTD of the pf/pc synapses.

Learning through LTD occurs in many places of the brain, and is usually accompanied
by the opposite process called long-term potentiation (LTP) (Bliss & Collingridge, 1993).
Although Artola and Singer (1993) concluded that LTD learning in the cerebellum distin-
guishes itself through the absence of LTP, this conclusion is not generally accepted (Kano,
1996). It be noted that LTD cannot be the only learning mechanism for the pc/pf synapses,
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since otherwise they would eventually be driven to zero responsiveness. Furthermore,
LTP takes place both at the granule cells and at the deep nuclei (Hepp, 1999), a fact which
has not yet been incorporated in any computational model.

Another cerebellar controversy concerns the vestibulo-ocular reflex (VOR). The func-
tion of this reflex is to stabilize an image on the retina while the head is subject to rota-
tional or translational movements. Lesions in the flocculus, the oldest part of the cerebel-
lum, prevent learning of the VOR, and Ito (1984) proposed the flocculus as an example
of the Marr-Albus theory. Later experiments, however (Lisberger, Pavelko, & Broussard,
1994; Lisberger, Pavelko, Bronte-Stewart, & Stone, 1994; Lisberger, 1994) show that the
same Purkinje cell can change its activity in the same as well as in the opposed direc-
tion of the VOR gain. Again, this phenomenon cannot be explained with the Marr-Albus
theory.

Thirdly, there are conflicting reports on whether the cf signal is an error signal; other
properties of the cf signals are also not explained by the Marr-Albus theory (De Schutter,
1997). Even the function of the cf signal is a mystery (Simpson, Wylie, & De Zeeuw, 1996):
while some researchers assume that the cf signal leads to LTD at the pc/pf synapses, other
conclude that it leads to short-term enhanced responsiveness at the pc/mf synapses.
Also, the cf has been proposed to serve as internal timing signal.

A final problem is the solution of the credit assignment problem. This problem can
be separated in the temporal credit assignment problem (e.g., (Sutton, 1984)) and the
structural credit assignment problem (e.g., (Houk, Buckingham, & Barto, 1996)). This
problem involves tracing back which signal from which unit causes an error in the output,
such that only the properties of this unit should be changed for optimal learning.

Despite all the controversy, a few largely accepted facts of the cerebellum remain:M the cerebellum is, among other things, responsible for the coordination of move-
ment (Flourens, 1824)—although it’s not completely clear what that means.M the cerebellum learns models of the skeletomuscular system (Miall, Weir, Wolpert,
& Stein, 1993; Kawato, 1995). Whether they be forward, inverse, or both still has to
be verified.M The learning process in the cerebellum is influenced by simultaneous activation of
pf and cf at a pc.

2.3 Tasks of the cerebellum

Although there exist clear indications that the cerebellum is involved in noun-verb asso-
ciation, visual shape discrimination, mental rotation, attention, working memory, and IQ
in general (Kawato, 1997), general areas of concern are classical conditioning tasks and
motor control.

Conditioning. A large number of experiments has shown that the cerebellum is in-
volved in conditioned motor reflexes (Bartha & Thompson, 1995). A traditional exper-
iment is the eye blink reflex. This experiment works as follows: a subject is given a puff
of air in the eye, before which a single tone is played. When the delay between the playing
of the tone and the air puff is constant, the test subject learns to close the eyelid on hearing
the tone, before the air puff is administered. This reflex, which can be learned within the
range 100ms–1.5s, is known to be solved by the cerebellum. Models exist which explain
this behaviour (e.g., (Thompson, 1990)).
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Motor control. A second, related task of the cerebellum is the ‘coordination of move-
ment’ (Flourens, 1824). Typical examples are the vestibulo-ocular reflex (Ito, 1984), limb
motor control (Kawato, 1995), eye saccade movements (Houk et al., 1996), and so on.
Many models have been proposed and described in detail (Albus, 1975; Houk, 1989;
Paulin, 1989; Miller, Glanz, & Kraft, 1990; Kawato & Gomi, 1992; Miall et al., 1993; Buono-
mano & Mauk, 1994; Kawato, 1995; Schweighofer, 1995; Houk et al., 1996; De Schutter,
1997; Smagt, 1998).

2.4 Cerebellar lesions and agenesis

There is a popular belief that patients with cerebellar agenesis can eventually recover
from this disability; supposedly, the cerebrum would be able to take over the functions
of the cerebellum.

Holmes (1939), possibly profiting from the availability of abundant research material,
records a large number of motor control impairments due to partial cerebellar lesions. All
his experiments demonstrate an instability in the motor programs of affected patients.
He concludes that “a striking feature of cerebellar injury [is] that its symptoms gradually
decrease in intensity and may in time disappear

�J�J�
by compensation by intact parts

of the cerebellum.” However, “in acute stages of disease the disturbances may be to
some extent reduced.” Through a careful analysis of medical case histories, Glickstein
(1994) finds that patients with full cerebellar defect do not recover from their impairment.
Clearly, the mammalian brain requires a cerebellum for stable motor control.

3 Control

But can robots use a cerebellar model for stable control? Besides the fact that the majority
of robot arms, that are subject of academic research, have an anthropomorphic structure,
there is little resemblance between human and robot arms. A first, important, difference
is the material that they consist of. The rigid and heavy-weight construction material of
industrial robot arms implies the requirement of actuators (typically DC motors) which
can generate the necessary forces. The robot motion is incurred through the forces or
torques that are exerted by the actuators.

3.1 Robot motion tasks

Usually, the task that has to be performed by a robot arm with up to six degrees of free-
dom can be described by a desired Cartesian trajectory

�KNOQP 2SR�T NU P 2VR � , where
NO is the desired

(3D) position and
NU

the desired (3D) orientation, that must be followed by its end ef-
fector. In sensor-based robotics, this trajectory may not be explicitly available before the
whole motion has been completed, but when computed would uniquely describe the
movement at hand. Also, in some applications only the final position of the end effector
is of importance; in that case, trajectory planning or path planning is used to determine
the trajectory from the current robot position to the desired position.

In traditional robotics, the instantiation of this trajectory is performed in a sequence
of steps:

Inverse kinematics. For a robot with revolute joints (e.g., an anthropomorphic robot),
this process translates the end effector trajectory into a desired trajectory

NW P 2VR in
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joint space. The forwards mapping, the kinematics, is in fact determined by (the
mechanical structure of) the robot.

In many instances, the inverse kinematics is not a function but has multiple solu-
tions. First, when the dimensionality (degrees of freedom) of the robot exceeds that
of the task, there are infinitely many solutions. But also when these two are equal
(typically 6), there may be more than one arm configuration to reach a point, e.g.,
elbow-up and elbow-down. Additional constraints, such as restrictions in allowed
acceleration, can be used to choose favourite solutions.

When the inverse kinematics solution is only used to determine a target end effector
position, this step must be followed by trajectory planning. At set intervals

�X2
(typically in the range 1–20ms) a joint position must be computed which the robot
arm should move to. Since the interval

�X2
is constant, this determines the full

kinematics of the motion.

Dynamic control or tracking. When a positional increment is available at each
�32

, the
joint servo control computes the necessary forces or torques at the motor side to
realize the requested motion. In traditional industrial robotics, a PD (Proportional-
Derivative) controller is customarily used. For a rotary joint, this controller sets the
torque to a proportional constant Y[Z times the joint position error, plus a derivative
constant Y�\ times the joint velocity error. For joint L :

N] 8 � 2 ��� YJZ�^ 8`_ Na 8 � 2 �b: a 8 � 2 :dc5�?ef� Y�\J^ 8g_ N ha 8 � 2 �b: ha 8 � 2 :ic5�?ej� (3)

Clearly, all the joints are independently controlled, and centrifugal and Coriolis
forces are assumed to be nonexistent. This control law is known as servo control.

An important property of the PD control rule is its proven stability. Arimoto and
Miyazaki (1984) showed that the joint error goes to 0 when using PD control, it was
later on shown that it decays at least exponentially.

Motor control. In the study of biological control systems, the term motor control refers
to the control of movement in general. In robotics, motor control refers to the mech-
anism which controls the DC motors in order to generate a desired torque

Nk . As-
suming that the joint servo control problem is adequately solved, the motor control
problem can be tackled on a joint-independent basis. A fast local feedback loop,
using the measured motor current L as steering signal, suffices here to control the
motor.

From section 2 it can be concluded that the applicability of cerebellar models to robot
control problems can be found in the improvement of adaptive dynamic control methods.
But where are such methods required?

3.2 Robot dynamics

A robot arm consists of the following parts:
(1) the links or arm segments. We consider these to be rigid bodies, which is realistic for
most small and medium-sized robots, as well as for skeletomuscular systems.
(2) the actuators. A tendency exists towards using DC motors or step motors for gen-
erating the required force; however, other types of actuators such as pneumatic artificial
muscles (Chou & Hannaford, 1996) have also received considerable attention.
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(3) the connection between the actuators and the links (e.g., gear boxes). With a ten-
dency towards light-weight robot arms, for DC or step motor based robot arms it is cus-
tomary to use high-ratio gear boxes such that the motors used can be kept small and light.
On the downside, however, is a considerable elasticity, such that both the rotation at the
motor side and at the link side must be measured. Direct drive robots are also under
consideration; yet, the motors have a very low force-to-weight ratio, and are therefore
not suitable for light-weight robots.

Under the assumption that the links and joints do not mechanically deform, the forces
that the robot structure exerts at the actuators is given by

k �mln� W �poW �dq3� W � _ hW hW e �srt� W � _ hWvu e �s>�� W T hW �v�d�X� W � (4a)w ln� W � oW �dx�� W T hW �v���X� W �
(4b)

where k is an y -vector of torques exerted by the links, and
W

,
hW
, and

oW
are y -vectors

denoting the positions, velocities, and accelerations of the y joints. P hW hW R and P hW�u R are
vectors

_ hW hW e�� _ ha�z ha u T hapz ha5{ T �J�J� T ha5|=}�z ha5| e5~ T (5)

_ hW u e�� _ ha uz T ha uu T �J�J� T ha u| e T (6)

ln� W �
is the matrix of inertia (the mass matrix),

q3� W �
is the matrix of Coriolis coefficients,rt� W �

is the matrix of centrifugal coefficients,
>�� W T hW �

is a friction term, and
�X� W �

is the
gravity working on the joints. Eq. (4b) is a simplified notation of Eq. (4a).

Agonist/antagonist drive. Biological arms, as well as some experimental robots, use
an agonist/antagonist drive principle. An example robot arm using this principle was
the Bridgestone rubbertuator arm, equipped with two or four McKibben (Chou & Han-
naford, 1996) artificial muscles per joint, connected via sprockets (Katayama & Kawato,
1991; Hesselroth, Sarkar, Smagt, & Schulten, 1994; Smagt, Groen, & Schulten, 1996). How-
ever, complex dynamic properties as well as extreme temperature sensitivity and costly
maintenance have lead to the production stop of this robot.

The advantage of an agonist/antagonist drive concept is that the stiffness of a joint
can be very intuitively set: while the joint angle depends on the difference in exerted
forces, the joint stiffness depends on the sum of those forces. There are several reasons,
however, for mechanical systems not to use this scheme; the key one being the fact that
two drives per joint are required, resulting in a significantly higher weight and more
power consumption. These resources are better invested in a robot arm construction
with a higher force-to-weight ratio.

3.2.1 Rigid robots

The simplest kind of robot arm consists of rigid links which are connected by rigid joints.
This assumption is true enough for industrial robots; the construction of the robot arm is
thus that any yield in the links as well as the joints can be neglected. In this case control is
done by linearization of the control equation. Eq. (4b) can be simplified in order to obtain:k ����� W T hW T oW � 6 (7)
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where 6 are the parameters which have to be estimated.
In industrial robots, the actuators are typically strong enough such that the diagonal

elements of the mass matrix
l

and the centrifugal matrix
r

are prevalent, while
q

is
approximately 0. Additionally, all matrices are approximately constant, i.e., independent
of
W

and its derivatives. These simplifications result in ] 8 �m� 8 oa � 4
8 ha u � � 8 , where L is the
joint number: the joints can be independently controlled.

Such simplifications usually do not hold for light-weight robot arms, which are sub-
ject of research in many robotics research labs. Due to weight and space limitations, the
actuators that are employed are not powerful enough to eliminate the influence of grav-
ity, friction, and Coriolis and centrifugal forces. This means that, apart from having to
take the full matrices

l
,
q

, and
r

into account, these and the
>

and
�

matrices are pa-
rameterized by the joint positions and velocities; Eq. (4a) cannot be simplified anymore.

3.2.2 Flexible links

Fortunately, material science allows the use of high-carbon wire in the production of
robots: a strong light-weight material which, although still costly to produce and es-
pecially to process, is used as an alternative to aluminium because of its strength. The
little research that is currently being done on flexible link robots is generally restricted to
two-link arms (see, e.g., Talebi, Khorasani, & Patel, 1998). We consider this topic to be
outside the scope of this paper.

3.2.3 Compliance

As mentioned before, light-weight robot arms are mostly equipped with actuators which
can exert only a limited torque, and therefore require high-ratio gear boxes. The dis-
advantage of this approach is the yield in such gear boxes, which has to be taken into
account in the control law.

The effect of a yielding gear box is that the torque at the motor side differs from the
torque at the link side. The resulting actuator is modeled by a motor–link pair connected
by a spring. To measure the spring properties, angle sensors both at the drive (measuringW��

) and link (measuring
W��

) sides have to be available. Equation (4b) changes as follows:k � ��l�� Wv� � oWv� �ix�� Wv� T hWv� �v���X� W�� � T
(8a)k � ���Q� hW�� � oW-� � k � (8b)

where k � is the torque at the drive side and, using a linear spring model, k � w Y � W � : W-� �
the torque at the link side.

�
can generally be assumed to be a diagonal matrix.

Naturally, biological skeletomuscular systems are always compliant, and it is this as-
pect in which cerebellar control may be able to play an important role.

3.2.4 Delays

A robot arm is generally controlled in various feedback loops: using imperfect measure-
ments, some model is used to generate new action commands which are subsequently
executed by the robot. During action, the actual motion is guarded and corrected where
necessary (see Figure 4).

Feedback loops are necessary since the models on which control commands are based
are never in perfect correspondence with the real world. Clearly, the faster the feedback
loop works, the less precise the robot models that are used need to be. Therefore the

10



encoder

other sensors

PSfrag replacements

����������

����� 0t� �

�
dyna-

mics

joint

servo

control
control motor

external
forces

planning

sensors

Figure 4: Feedback loops in a robot control system. At the lowest level, the motor controller uses
the measured electric current

�
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tendency in robotics is to decrease the joint servo feedback delays. For light-weight robot
arms, delays of 1ms are not uncommon, whereas industrial robots typically have delays
of around 10ms, necessary to obtain fast and stable control.

The situation is radically different in biological systems. Feedback delays can be as
much as 110–150ms for proprioceptive control (Cole & Abbs, 1987) and 200–250ms for
visuomotor control (Miall et al., 1993). Stable control in the presence of such extensive
delays can partly be explained by the fact that skeletomuscular systems have an apparent
passive behaviour (Hogan, 1990).

3.3 Traditional control

To control a robot structure, a control law has to be devised which computes torques
which, when applied to the joints, make the robot arm stably follow a trajectory

W P 2VR ,
taking the dynamics equation (4b) or Eqs. (8a) and (8b) into consideration.

It is customary to simplify the problem via control law partitioning : the control law
is dissected in a model based part and an error based part. If

Nk is the input torque to the
plant, we write

Nk � � Nk�� ��� where
Nk�� is the torque applied to the unit mass system (see

Figure 5). By setting � �mln� W �
and

����x�� W T hW ���d�X� W �
(Eq. (4b)), the control law is

Nk � � NoW ��� \ � N hW : hW ����� Z � NW : W � T (9)

i.e., a simple servo control method (cf. Eq. (3)). This control system is also known as
computed torque control.

Clearly, the key question remains: how do we find the optimal � and
�

? There exist
various robotics techniques which address this problem; however, it is far from solved,
and requires substantial modeling of robot structures. In PD control, the simplified model� w�� and

� w�� is chosen: the model-based component is eliminated. Furthermore, the
elements of the diagonal matrices

� \ and
� Z are chosen as large as possible (depending on

how strong the actuators are), such as to eliminate the errors introduced by the neglected
Coriolis and centrifugal forces. If this approach is reasonable, a proven stable control
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method results (Arimoto & Miyazaki, 1984). In other cases, however, � and
�

can, to
date, only be found by extensive modeling of the robot.

4 Integrating cerebellar systems in robot control

In describing the benchmarks for a cerebellar controller, there are two issues that have to
be taken care of. First, what are the (dynamical) properties of the system on which the
controller is tested? Section 4.2 provides with a set of systems with increasing dynamical
properties. Second, on what tasks are these complete systems then tested? Three tasks
are given in section 4.3. By combining from both pools, up to 18 different benchmarks
can be selected.

4.1 Where can cerebellar models be applied?

The long delays that are present in the biological motor system require a highly accurate
control mechanism. Since many movements (such as swinging a golf club) have a dura-
tion of well below one second and therefore use very little feedback, the control has to be
mainly model based. It is proposed by many authors that such models are learned by the
cerebellum, be they feedback (e.g., Atkeson, 1989; Kawato & Gomi, 1992) or feedforward
(e.g., Miall et al., 1993).

But how can a cerebellar model be used in a control loop? Figure 6 shows three pos-
sibilities. First, using the cerebellum as a model in a negative feedback loop (Fig. 6a). In
this case, the cerebellum is used as an exact copy of the plant, and mimics its input-output
behaviour. The model is used by the control loop to update its internal behaviour, and
can correct its output without receiving direct feedback from the plant. Feedback from
the plant can be used to update the forward model.

A plant model used with positive feedback is shown in Fig. 6b. In this case, the model
is used to mimic the plant as a unit mass system, such that the control law can be restricted
to a simple servo law. As discussed above, this is a traditional robotics approach known
as computed torque control (Fig. 5), and the major problem lies in finding the correct
model parameters. A fast feedback loop is required to control the robot, in order to have
the servo control loop lead to stable control.

In Fig. 6c an model is used which directly translates the motor plan
NW

to torques
Nk ,

which are fed into the plant. Feedback is required where the inverse model is imprecise.

12
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Figure 6: The use of a model of the plant in a control loop. When negative feedback (a) is used,
the model mimics the action of the plant, and can be used to internally optimize the controller (Miall
et al., 1993). Using a model with positive feedback (b), the control law is a servo law (cf. Fig. 5).
When a model (c) is used, the desired state can be directly translated to a motor command.

Miall et al. (Miall et al., 1993), choosing model (a) as optimal solution because of the
more restricted motor feedback requirements, go a step further and also model delays in
the system; their resulting theory describes a model based on the Smith predictor (Smith,
1959), a well-known engineering concept which is used to model systems with extensive
delays.

4.1.1 About the validity of integration

It is clear that the kinematic and dynamic properties of biological and robot arms are rad-
ically different. Similarly, differences in material properties make the respective control
systems very different. Are such differences prohibitive for applying biological control
methods to robotic tasks?

This problem can be largely circumvented by simulating many of the known prop-
erties of such biological systems. This approach, although technically unsound from a
current-day point of view, is used in many settings where biological control principles
are applied to (simulated) robotics. In this paper, however, we prefer to take existing
robotics concepts as a basis, in order to investigate how biological control principles can
help us there,

To compare the biological and robotics control principles, we discuss three basic dif-
ferences.

Delays. An important difference is the length of delays present in the control loop. For
instance, human proprioceptive feedback can be as slow as 110–150ms. In robots, this
feedback can be well below 1ms, while control loops are in the range 1–10ms. In extero-
ceptive delays, this difference is up to an approximate factor 10.

On the other hand, robotic systems are typically capable of performing precision tasks
at very high velocities and accelerations, which of course requires such fast feedback. It
must be noted, however, that stable control of robot arms in the presence of delays of
around 100ms is difficult.

13



Bandwidth of the actuators. Clearly, the bandwidth of a skeletomuscular system is
much lower than that of a robot arm, by an approximate order of magnitude. This lower
bandwidth, however, suffices for stable control, since skeletomuscular systems have an
apparent passive behaviour (Hogan, 1990). Although partly due to the fact that muscles
exhibit a spring-like behaviour, it is not entirely clear how this passivity is otherwise ob-
tained. At any rate, neural feedback pathways exist which relate motions at one joint to
muscle activity at another (Eccles, Eccles, & Lundberg, 1957).

Stiffness. As discussed in the introduction of this paper, industrial robots are de-
signed as completely stiff mechanical systems. Although being varied by the � -neurons,
due to the structure and the compliance of the muscles the stiffness of the skeleto-
muscular system is of course much lower than that of industrial robots. Modern-day
lightweight robots, however, have stiffness characteristics similar to those of biological
arms (Hirzinger, 1996).

In conclusion, it seems plausible that the cerebellum is responsible for the apparent sta-
bility of skeletomuscular systems. Clinical studies (Holmes, 1917; Glickstein, 1994) seem
to confirm this assumption. When considering the above arguments, there appears to be
no reason that cerebellar models could not be applied to robotic systems.

4.2 The dynamics

When applied to robotics, where fast feedback loops are common, all three approaches
depicted in Fig. 6 are feasible control approaches. Note that, for biological systems, there
exists an additional advantage of using feedforward instead of feedback models: the
internal prediction of the actions can be used in other parts of the brain, before feedback
of the central neural system is available.

In order to test a cerebellar model in such a feedback loop, it should be tested on typ-
ical robotics applications. We have prepared a number of typical benchmarks stemming
from traditional robot dynamics modelling, which can serve as the “plant” in Fig. 6. Each
of these benchmarks contains a simulated model of a robot arm.

When restricting the control system to the feedback loop Fig. 6a, it suffices in theory
to have the cerebellum learn the robot dynamics benchmarks proposed in this section. In
realistic applications, however, the forward dynamics may not be available, such that the
problem of generating learning samples without the availability of a model still has to be
solved. When successfully completed, the resulting model can be plugged in the Fig. 6a
model.

The simulations are based on the iterative Newton-Euler algorithm for robot dynam-
ics (see, e.g., Craig, 1986 for a lengthy discussion). The principle of this algorithm is as
follows: in the forward iterations, the joint velocities and accelerations are computed
starting at the base joint and moving outward to the last joint. Then, in the backward
iterations, the resulting torques are computed back towards the base of the robot.

Although these computations can be done symbolically, the required number of com-
putations is humongous even for a robot with only three degrees of freedom (whereas
6 are required for complete dexterity). It is more efficient, therefore, to compute the for-
ward and backward equations numerically, and get the results from there.

The benchmarks which we suggest in this paper are all based on such simulations2.
2These benchmarks are available from the author as computer program, and can currently be obtained

via http://www.robotic.dlr.de/Smagt/research/cerebellum/.
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Reasoning from a robotics point of view, we distinguish three levels of complexity. First,
the dynamics of a robot arm are considered with no external forces working on it. This
type of robot is relatively easy to control with servo control only. When we add gravity
to the robot, an extra gravity compensation or integral servo term must be added. Finally
friction, which is highly problematic in light-weight robot arms, is added.

For all types of benchmarks we distinguish between a stiff robot, and a robot with flex-
ible joints. For a stiff robot, the simulation can easily be performed as follows. Starting
from an initial joint position and velocity, we can simulate the moving robot by comput-
ing

oW­¬ l�� W � }�z _ Nk :®x�� W T hW �b:®�X� W �?e9� (10)

The torque
Nk , generated by the external controller, influences the joint acceleration as

described in this equation.
In the case of yielding joints, the simulation becomes somewhat more complex. This

time starting from an initial
Wb�

,
hWv�

,
W��

, and
hW-�

, by looking at Eqs. (8a) and (8b), we find

oW���¬ l�� W�� � }�z _ Y � Wv� : W�� �b:®x�� W�� T hW�� �	:®�X� Wv� �?e T (11)oW��¯¬ �`� hWv� � }�z P Nk � : Y � W�� : Wv� � R � (12)

The following three sections describe the six benchmarks. Note that the (b) bench-
marks are all more complex to control than the (a) benchmarks.

4.2.1 Benchmark I: y DoF robot arm with internal forces

For the first benchmark we consider the dynamics of a robot arm where the gravity and
friction forces are neglected. The basic equation (4a) is simplified:

k �mln� W � oW �dq3� W � _ hW hW e �srt� W � _ hWvu e � (13)

(a) For this benchmark we assume a robot arm with stiff joints. In the case that the
motors are strong enough (true for most industrial robot arms), the Coriolis forces can be
neglected. Such a robot arm can be optimally controlled using a standard PD controller,
of which the stability is proven.

A cerebellar control method should be able to control such a robot for y±°d² . Both the
simplified decoupled case as the case where cross influences are to be considered have to
be taken into account. The robot simulation equation can now be written as

oW­¬ l�� W � }�zg³ Nk :´q3� W � _ hW hW e�:Hrt� W � _ hW u e�µ�� (14)

(b) A robot arm with yielding joints. For the simulation we use

oW���¬ l�� W�� � }�z ³ Y � Wv� : Wv� �	:®q�� W � _ hW hW e.:´r­� W � _ hWvu e�µ T (15)oW��¯¬ �`� hWv� � }�z P Nk � : Y � W�� : Wv� � R � (16)
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4.2.2 Benchmark II: y DoF robot arm with external forces A

For this benchmark we only add the gravity component:

k �mln� W � oW �dq3� W � _ hW hW e¶�srt� W � _ hWvu e¶�i�X� W ��� (17)

For PD servo control this type of control is more complex, since the steady-state forces
which are introduced by the gravity cannot be compensated.

These external forces are traditionally compensated by adding an integral error termY 8�· ~ W � 2 �K: NW � 2 � 4 2 to the servo control law, resulting in an extra Integral component added
to the PD law (known as a PID law). The stability of the resulting control law has not been
proven, however.

(a) Again we assume a robot arm with stiff joints. When the gravity component is
added, the robot arm can be optimally controlled using a standard PID controller. Al-
ternatively, the gravity part is solved by a separate controller (such as, e.g., the ISM
model (Katayama & Kawato, 1991; Kawato & Gomi, 1992)) to which a controller of sec-
tion 4.2.1(a) is added.

Again, cerebellar control method should be able to control such a robot for y °¸² .
Both the simplified decoupled case as the case where cross influences are to be considered
have to be taken into account. The robot simulation equation is now written asoW­¬ l�� W � }�z ³ Nk :´q3� W � _ hW hW e�:Hrt� W � _ hWvu e�:®�X� W �Jµ¹� (18)

(b) A robot arm with yielding joints. For the simulation we useoW���¬ l�� W�� � }�z ³ Y � Wv� : Wv� �	:®q�� W � _ hW hW e.:´r­� W � _ hWvu e�:®�X� W �Jµ T (19)oW��¯¬ �`� hWv� � }�z P Nk � : Y � W�� : Wv� � R � (20)

4.2.3 Benchmark III: y DoF robot arm with external forces B

Finally we add the most complex force: friction. The dynamics of the robot has to be fully
considered:k �mln� W � oW �dq3� W � _ hW hW e¶�srt� W � _ hWvu e¶�s>�� W T hW �v�d�X� W ��� (21)

There are two problems with modelling the friction. First, the friction component can-
not be determined from the model. Second, the nonlinear Coulomb component of the
friction, described by ][º �¼»v½B¾
¿	� ha �

, makes accurate control at low velocity virtually im-
possible, due to the jagged form at

ha � � .
Friction plays a prominent role in light-weight robot arms with high-ratio gear boxes;

it typically accounts for over 50% of the power consumption. It is therefore not an effect
which can be neglected in robot modeling.

(a) We first assume a robot arm with stiff joints. There exist no general stable control
methods which can control such robots without extensive modeling. Standard methods
are often computed torque-based. The robot simulation equation is now written asoW­¬ l�� W � }�z ³ Nk :´q3� W � _ hW hW e�:Hrt� W � _ hW u e�:H>�� W T hW �b:®�X� W �Jµ¹� (22)
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(b) A robot arm with yielding joints. For the simulation we use

oW���¬ l�� W�� � }�zg³ Y � W � : Wv� �	:®q�� W � _ hW hW e :´r­� W � _ hWvu e :H>�� W T hW �	:´�3� W � µ T (23)oW��¯¬ �`� hWv� � }�z P Nk � : Y � W�� : Wv� � R � (24)

4.3 Application

Having laid out the possible variations in dynamics, we finalize the benchmarks by de-
scribing three applications that are typically solved by a controller: trajectory tracking,
compliance control, and exteroceptive feedback control.

4.3.1 Tracking

In robotics applications, accurate trajectory following of a robot arm is often a minimal
requirement for a controller. We suggest three types of trajectories on which a controller
should be tested: a smooth trajectory, a pulse response trajectory, and a standard robot
controller test trajectory.

Smooth trajectory. The choice of a trajectory on which a control method is tested de-
pends on the kinematic and dynamical properties of the robot arm, as well as the target
area of application. For instance, for a 2-link robot arm (of which the applicability is
very limited), a typical task would be to track a sinusoidal curve within the plane of the
arm in both Cartesian dimensions, i.e., a circle by its end-effector (when the phase dif-
ference of both sinusoids equals ÀbÁpÂ ), such that the angular velocity of the circle remains
constant. Although nonlinear in the robots joint angles, this trajectory is relatively easy
to follow since the joint velocities as well as accelerations remain within small bounds.
These bounds can be varied with the radius of the circle.

The same principle, i.e., of following a sinusoidal curve in all Cartesian dimensions,
can be used as a trajectory for a 3 DoF robot arm (see Figure 7a).

Pulse response. Difficult trajectories are those where the joint velocity profiles are
nearly-discontinuous, i.e., joint accelerations are close to their mechanical maximum. To
test the performance of a controller in these extreme situations, the pulse response of the
system can be measured. The desired velocity of each joint should follow a step func-
tion as closely as possible. Possible pulse responses are shown in Figure 7b. Here, an
overdamped system will reach the desired velocity too slowly, while an underdamped
system will swing. Although a critically damped system will have the fastest response, a
controller which exhibits underdamping is often used, since in that case the desired joint
position

Na
can also be reached (the integral of the dashed curve equals the integral of the

pulse).

The Schmidt trajectory. There exist several standard methods to test such controllers,
one of which is the Schmidt trajectory (Fig. 8). This trajectory consists of a 2D curve which
must be accurately followed by the end-effector of a robot. The whole trajectory should
be followed with constant velocity, or rather maximum acceleration at the corners of the
trajectory.
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Figure 7: (a) Circle trajectory
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Figure 8: The Schmidt trajectory for testing robot arm controller. This 2D curve describes the
path that should be followed by the end-effector of a robot arm. The dimensions of the trajectory
depend on the dimensions of the manipulator, such that the maximum reach space of the robot is
explored.
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4.3.2 Compliance control

In the case that a robot manipulator is in physical contact with its environment, the prob-
lem of compliancy has to be solved. Inability particular, the stiffness of the manipulator
has to be adapted to the stiffness of the object. For instance, if the robot arm is moving
freely, its stiffness can be maximal, thus allowing for faster and more accurate control.
If in contact with a rigid object, however, its stiffness has to be reduced immediately, in
order to prevent instability.

Although being varied by the � -neurons, the stiffness of the skeletomuscular system is
of course much lower than that of industrial robots. Also, compliance is typically solved
by the kinematic structure of arms, e.g., grasping is typically done in such a fashion that
the arm position allows for compliance.

4.3.3 Exteroceptive feedback delays

As a final task, control with exteroceptive (e.g., visual) feedback has to be considered.
The delays in such setups are much more extensive than with proprioceptive feedback
alone. Typically, this task involves the tracking of a moving object in sensor space, but in
an environment where sensor data preprocessing is assumed to be solved.

5 Discussion

Clearly, there exists an enormous gap between the applicability of cerebellar models to
robot dynamics control, and existing applications of such. Nevertheless, the emerging
interest in cerebellar models demonstrate an enormous possibility. Although many cere-
bellar models exist which can be applied to robot dynamics control, the applications of
such models are almost exclusively restricted to 2-link simulated robot arms.

To advance the merger of the two, we advocate the use of a set of benchmarks which
clearly demonstrate the current-day problems in robot dynamics control.

It should never be forgotten that the real test of any robot control method can only be
done on a robot, and not with a simulated model. The benchmarks should therefore only
be used as a final step before integration on a robot arm is started.
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