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� Introduction

The positioning of a robot hand in order to grasp an object is a problem fundamental to
robotics� The task we want to perform can be described as follows� given a visual scene
the robot arm must reach an indicated point in that visual scene� This marked point
indicates the observed object that has to be grasped� In order to accomplish this task� a
mapping from the visual scene to the corresponding robot joint values must be available�
The task set out in this chapter is to design a self�learning controller that constructs that
mapping without knowledge of the geometry of the camera�robot system�

When the position of the object is unequivocally known with respect to the robot�s
base� and the robot geometry �the kinematics� is known� a single computation followed by
a robot joint rotation su	ces to reach the indicated position�

But what if these data are unavailable or� a more typical case� are too inaccurate to
solve the problem and grasp the object
 To tackle this problem� we assume an academic
problem and let go of any explicit model of the robot or its sensors� So� we assume that
the visual system needs no precise calibration� The solution is given by learning � a neural
controller has to learn to generate robot joint rotations which position the end�e�ector
directly above the target object� Figure � demonstrates the task� Note that� due to the
fact that the designed system does not rely on a model of the robot� it can in fact be
applied to any robot arm�

In order to design a system which can be successfully used in real�world applications�
there are two important issues which have to be considered� First� in real�world applica�
tions of robot systems� a 
reasonable� training time must be ensured� Real robots move
slowly in comparison with simulated robots� so it is important that after only a few trials
the goal is reached� Hundreds of trials are not acceptable� Secondly� the added value
of self�learning systems must be fully exploited� it is essential that the method adapt to
unforeseen gradual or sudden changes in the robot�camera system� The combination of
these two points has been ignored in many previous approaches�

The system is thus set up that the relation between sensor input and robot motion
is many�to�one� i�e�� given a sensor reading� a robot motion can be uniquely determined�
This simpli�cation means that there is always only one posture �arm con�guration� to
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Figure �� The task� grasp an object�

reach a speci�c position� for instance� there is no elbow up�elbow down ambiguity� As
customary in robotics� this situation is realised by choosing a preferred situation �c�q�� the
elbow up con�guration� and never presenting the con�icting �elbow down con�guration� to
the adaptive controller� Note that it is not guaranteed that the elbow down con�guration
will never occur� when the controller parameters are su	ciently disturbed� this case is�
in theory� not excluded� In practice� however� it is never learned and therefore does not
occur�

In our approach no explicit models of the camera or the robot are available� The
camera�hand mapping must be learned by the neural network based on the �measured�
behaviour of the camera�robot system� Hereto learning samples are gathered during
the control process and added to the learning set� The size and exact implementation of
this learning set is directly related to the adaptability and accuracy of the system� a large
learning set leads to a sluggishly adapting system� whereas a small learning set cannot be
used to construct an accurate controller� Therefore its size must be varying�

Summing up� we have to tackle the following four problems�

�� how do we control the robot without having a model of the robot nor of its sensors


�� how do we get the �computationally intensive� neural network to learn the robot�s
behaviour on�line


�� how do we ensure that the resultant approximation is precise enough to control the
robot in its large reach space


�� is the neural network fast enough for real�time robot control while handling visual
data


To understand what these requirements mean we �rst need to understand some of the
pitfalls of robotics and vision�
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� The components

��� Robotics

In robotics� when we restrict ourselves to the control of robot arms� we are faced by three
problems�

�� assuming that a target position is known �in Cartesian or sensor space� where the
hand of the robot arm must go to� a set of joint angles must be computed with which
the robot can reach that position� This problem is known as inverse kinematics�

�� Secondly� a path must be generated along which each of the joints must be moved in
order to reach the target position from the current position� This problem is known
as path planning�

�� Third� and �nally� the right forces must be exerted on the joints �e�g�� by giving
the motors of the robot the right currents� in order to actualise the motion� This
problem is known as inverse dynamics�

Computation of the inverse kinematics is a solvable problem� provided that the dimensions
of the robot are known� This knowledge depends on a model of that robot� and of course a
problem exists when a model is not available or� which is often the case� not very accurate�
One should realise that an error of a fraction of a degree in robot arm rotation can result
in a few mm up to a cm of positioning error of the robot hand� The model therefore has
to be very precise�

More complex are the inverse dynamics� The dynamics of any d degree of freedom
robot with rotational joints can be described by the equation �Craig� �����
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F���� is the matrix of inertia� F���� is the matrix of Coriolis coe	cients� F���� is the
matrix of centrifugal coe	cients� F���� ��� is a friction term� and F���� is the gravity
working on the joints�

When the robot has to move from one joint position to another� a torque must be
applied which generates T � The problem of calculating the correct torques �forces� to
have the robot arm follow a speci�ed trajectory is known as inverse dynamics� Industrial
robots are generally designed to eliminate the interdependence between the joints� such
that the robot arm can be regarded as d independent moving bodies� In that case� F�

and F� are diagonal matrices and F� is zero� This reduces the �d�values vector �eld as
described in ��� to d independent functions of three variables for which the coe	cients
have to be found� Also� the link actuators are usually made so powerful that F�� F��
F�� and F� can be considered independent of �� For this simpli�ed �and common� case�
various standard methods exist to compute the inverse dynamics �Fu� Gonzalez� � Lee�
������ This controller eliminates the requirement of knowledge of the robot arm in order to
control it� When using such a control method� the robot can be controlled by specifying
joint values� velocities� and accelerations� and knowledge of the required forces is not
required� However� this control method requires a precise model of the robot� which may
not be available� Adaptation and learning is therefore an important tool�
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��� Vision

The vision problem is di�erent� here we are faced with huge amounts of data �in particular�
a black�and�white camera generates approximately  ��!Mb of data each � msec �or over
�Mb of data per second�� a colour camera three times as much�� How are we going to
handle this data


Clearly� even the fastest workstation� which can make over �  M�ops �a �op is a single
�oating�point operation� per second� has no chance� Although � million of multiplications
can be done in about  ��s� when in the meantime � million memory locations have to be
accessed this time can go up to more than � s�

Therefore it is wise to preprocess the visual data� With specialised hardware� we might
do the following tricks in real�time �i�e�� as fast as the images are generated��

� reduce a grey�level image to black�and�white ���colour��

� subsample the b�w image� i�e�� reduce a full�size !�� � !�� image to �!� � �!� or
��� �� or � � � � In fact� reduction up to ��� �� is possible without losing data� after
all� the binary b�w image needs only one bit per pixel"

� select all the regions which are white and compute their position and orientation in
the image �blob �nding and moment computation��

� select the object that we are really interested in� and �nd a unique form for its
position �� integer values� and orientation �� �oating point values��

Thus the  ��!Mb per � msec can be reduced to a few bytes only� These data can be easily
processed by a neural network or any other controller�

Nice at it seems� there is of course a price to be paid� The �exibility of the resultant
system is limited due to the approach� As much as we would have liked to� it is just not
feasible to pump the whole image into a self�learning neural system"

Naturally� there are exceptions to this rule� One of the most famous examples is the
ALVINN� a neural�network based vehicle driving system� The neural network has as input
a sub�sampled � ��� pixel image of from a camera mounted on the roof of a car� The input
is fully connected to a !�unit hidden layer� which in turn is connected to � output units�
each of which indicates a direction in which the vehicle has to steer� To teach ALVINN
to steer� a driver has to drive the car for about three minutes while ALVINN is learning�
Due to its generalising ability� ALVINN is not only able to drive on roads marked with
white and yellow stripes� but has demonstrated its ability to stay on single�lane dirt roads�
single lane paved bike paths� two lane suburban neighborhood streets� and lined divided
highways� On the last domain speeds of up to � mph were reached on public highways�
Note� however� that for each road type a network must be speci�cally trained� The choice
of which network is best used is also taken care of by ALVINN�

����� Visual setup

For the system to accomplish the speci�ed task it must know the position of the observed
object relative to the robot� in some coordinate system� Consider a robot that a speci�c
moment has a joint position �� The position of the end�e�ector in world coordinates is
given by xr� The robot has to move towards an object located at world position xo� i�e��
assume a � such that the xr equals xo� As discussed above� xo and xr are not available
without an accurate model of the visual system� There are two basic visual setups to
obtain the required visual information�
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�� External �world�based� camera� both the robot and target object are observed
by cameras situated at �xed and unchanging positions� The visually observed object
features �indicated by f�igo� in the image must uniquely determine the position xo
of the target object� otherwise� when the target position is not uniquely known� the
required robot move to reach the target cannot be determined from the observation�
Also� the visually observed robot features f�igr representing the robot end�e�ector
must uniquely determine its world coordinates xr� to ensure that the relation between
the vision domain and the robot domain is learnable�

�� Internal �robot�based� camera� the target object is observed by cameras which
move together with the robot�s end�e�ector� The observed object position �the visual
observation �� may not uniquely describe the object position in world coordinates�
However� now measurements � together with the robot position � must uniquely
de�ne the world coordinates xo if a non�ambiguous motion plan has to be made�

These two setups are basically di�erent in the following way� In the case of world�based
vision� the target object� the robot end�e�ector� and the �positional� relation between the
two must be determined� In robot�based vision the target object is observed in a camera
coordinate frame relative to the robot end�e�ector position� Therefore it is not necessary
that the position of the robot end�e�ector be observed� and hence robot�based vision is
simpler and more robust�

Robot�based vision has another advantage over world�based� The positional precision
that can be extracted from a quantised camera image is inversely proportional to the
distance between the camera and the observed scene �when the focus of the optical system
is �xed�� Thus the visual precision increases when the target object is approached� the
�nite resolution of the camera is no limiting factor� World�based cameras� which are not
moving with the gripper and yet have to see the whole work space� have to be placed rather
far away� typically in the order of �m from the robot base for a robot with a typical arm
length of �m� Thus their precision will be limited� typically  �!��cm for the application
in this chapter�

The perspective transformation that maps �D points on a plane �c�q�� the image plane�
is a many�to�one relationship and is thus not invertible� A single image obtained from
one camera does not provide the required depth information to reconstruct the positions
of the observed components in the �D world� Since the controllers developed within the
scope of this thesis needs such information� additional a priori knowledge is required� Two
solutions are considered�

�� Model�based monocular� in this case� a priori knowledge of the observed object
is assumed� For instance� when a su	cient set of point features of the object can
be observed� and the position of these features on the object is known� the position
of the object relative to the camera in world space can be reconstructed� For more
detailed information about robust model�based approaches� consult� e�g�� �Kanade�
����� Lamdan � Wolfson� ����� Gavrila � Groen� ������ An exemplar method is
the following� when the camera is looking down to the scene consisting of a single
object with a �at� horizontal surface� the observed area of the object is inversely
proportional to the square root of the distance�

�� Correspondence�based binocular� When no a priori knowledge is present� tri�
angulation can be used to measure depth� This can be realised with a stereoscopic
system �Ballard � Brown� ����� Fu et al�� ������ When two cameras� whose image
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Figure �� An optical system with the CCD placed at focal distance from the lens� The
symbols are referred to in the text�

planes are situated at known �relative� positions� observe the �D scene� the corre�
sponding point features from both images can be used to reconstruct the �D image�
As shown in� e�g�� �Ritter� Martinetz� � Schulten� ������ the relative image plane
positions need not be calibrated but can be incorporated in the learning mechanism�

When the visual scene becomes increasingly complex� or the number of degrees of
freedom for positioning the robot manipulator increases �e�g�� not only the posi�
tion but also the orientation of the hand is of importance�� the complexity of stereo
vision will increase considerably� Especially for complex visual scenes� the corre�
spondence or matching problem �Marr� ����� Ballard � Brown� ����� becomes
a signi�cant problem� which point features in the left image correspond with which
point features in the right image


����� Implementation

In conclusion� the advantage of model�based monocular vision is the increasing precision�
avoidance of the correspondence problem� and simpler image processing� An additional
advantage is that the problem of occlusion of marker points or parts of the observed
object �e�g�� due to the rotating robot arm� is avoided� A disadvantage of this method is
the requirement of a priori knowledge of the observed scene�

Relative depth information can be obtained by using sequences of visual images� By
measuring the divergence in an image when approaching an object �e�g�� how much an
observed object gets larger when it is approached�� the visual distance divided by the
visual velocity� Note that the absolute distance cannot be measured� e�g�� a large object
far away cannot be distinguished from a nearby small object�

In most CCD cameras� the image plane �CCD� is placed at the focal distance f from
the lens� such that the point of focus is at in�nity� An object placed at distance dz � f
from the lens will be projected on a point h from the lens� such that �Hecht � Zajac� �����
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as depicted in �gure �� In the proposed system� the depth dz will be derived from the
projected �or observed� area �A with relation to the 
real� area A of the object� A is de�ned
as the projected area of the object when dz � f � This observed area is measured as the
number of white pixels �constituting the object� on the CCD� Assuming a pinhole camera�
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the dz and �A are related as

dz � f

s
A

�A
� ���

Note that f and A are constants for one particular lens and object�
Given the placement of the camera� and the data that are obtained from it� the visual

processing system can be discussed in more detail� The system must accomplish the
following tasks �Fu et al�� ������

�� image acquisition� the image� projected on the camera�s image plane� must be
transferred to the memory of the image processing hardware� This renders a discre�
tised image I�

�� image segmentation� from the discrete image I it is determined which parts
represent components� and which represent background� This is typically done using
the basic principles of �dis�continuity �i�e�� edge�based� and homogeneity �i�e�� region�
based��

�� image description� for the purpose of component recognition and for subsequent
use in the control algorithm� for each component� features � describing the properties
of the component as well as its position are determined�

�� component recognition� the identi�ed components are labeled as target object�
robot hand� background� � � � � For the purpose of this thesis� only the target object
and the background need to be identi�ed�

The visual system used for the experiments described in this chapter needs only identify
the �D position of an observed object� the depth is calculated from the area of the object�

��� Control systems

Having qualitative models of the sensors and the robot� a controller must be designed to
solve the task set out in the introduction�

The design of a controller depends on the knowledge that is available from the process
that is to be controlled� Three stages of control are distinguished �Bellman � Kalaba�
��!�� Narendra � Annaswamy� ������

�� when the controller has complete information about the behaviour of the inputs of
the process� and this process is fully speci�ed� the process is called a deterministic

control process�

�� when unknown variables are present as random variables with known distribution
functions� the process is called a stochastic control process�

�� �nally� when even that information is not available� but the controller must learn to
improve its performance by observing the behaviour of the controlled process� this
process is referred to as an adaptive control process�

Clearly� within the scope of the task set out in the introduction� the process that is
controlled is in the third of the above categories�

An adaptive controller has the problem of the following duality �Feldbaum� ���!�
Narendra � Annaswamy� ������ �rst� it must identify the process that is to be controlled
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Figure �� a� Direct adaptive control� b� Indirect adaptive control�

and �nd its parameters� and secondly� it must �nd which actions are required for con�

trol of the process� Two solutions exist �Narendra � Annaswamy� ����� Narendra �
Parthasarathy� ��� � #Astr�om � Wittenmark� ������ direct adaptive control and in�

direct adaptive control� In indirect control ��gure �b�� the parameters of the plant
�i�e�� the system that is controlled� are estimated on�line� and these estimates are used to
update the parameters of the controller� In direct control� however� plant parameters are
not estimated but the control parameters are directly updated to improve the behaviour
of the system ��gure �a��

The direct control method in �gure �a works as follows� The plant is controlled by a
signal u� and outputs a signal yp� The reference signal is a signal r which is input to
the controller� r can be regarded as the desired situation or desired state of the system�
The reference model is used to compute the desired plant output ym from the reference
signal or setpoints r� The reference model translates r to the domain of yp� resulting
in ym� The task for the controller C is to generate a signal u � C�r� which minimises
kym � ypk� i�e�� it minimises the di�erence between the actual and the desired situation�
This error signal is subsequently used in the update of the controller�

The direct control method is normally not used for the following reason� The error
signal kym � ypk carries information on how the output of the plant must change� and
not the output of the controller� In order to adapt the controller� however� the error must
be available in terms of u� This can only be determined when �u��yp is known� which
requires an inverse model of the plant� This is a serious drawback of this approach� since
this inverse model is usually not available�

A solution is given by the indirect control method� An extra model called the
identi	cation model is introduced in the system� which learns to copy the behaviour
of the plant� i�e�� it is a forward model of the plant� This model will be some parametric
model of which the resultant parameters p describe the behaviour of the plant� These
parameters are then used in the update of the controller�
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desired �d�i���� the controller has enough information to determine the plant input $��i��
The z�� is a delay�

��
�� Structure of the proposed controller

However� the direct control method can still be used when no reference model is needed�
This is the case when the reference signal r is expressed in quantities which can directly
be measured from the plant� i�e�� r and yp are in the same domain�

The robot%camera system can be seen as a discrete state machine� where the controller
C is assumed to be delay�free� and we write �d�i��� instead of r� and ���i������i���� for
yp� From i to i � � two measurable transitions occur� from ��i� to ��i � �� and from ��i�
to ��i � ��� Both are representations of the state of the camera�robot system� the � the
internal robot state �viz� joint values� and the � the visual observation� Since the camera
is hand�held and only observes the object� neither representation alone su	ces to uniquely
describe the state of the system� this state is only given by pairs ���i����i���

Since the robot moves from internal joint state ��i� to ��i � ��� we will denote the
controller output which e�ectuates this move by $��i�� Also� note that ��i � �� is the
signal for which �d�i��� is the desired value� This means that� when ��i��� � �d�i���� a

successful� $��i� had been generated and applied to the robot� Di�erently put� we know
that

C� ���i����i���d�i� ��� � $��i�

where C� is the ideal controller� In all other cases a valid transition is still available�

C� ���i����i����i� ��� � $��i�

even though ��i � �� �� �d�i � ��� Thus we can focus on direct control only� and do not
require an identi�cation model� after all� the plant output and the controller input are in
the same domain� The resulting controller is depicted in �gure ��

The studied direct adaptive controller� used in all subsequent chapters� consists of a feed�
forward neural network trained with conjugate gradient optimisation� We will refer to this
neural controller by the symbol N instead of C� The universal approximation capabilities
of such networks allow them to be used in a direct control scheme while eliminating the
requirement for a reference model�

�



1.4

1.2

1

0.8

0.6

0.4

0.2

y

5

4.5

4

3.5

3

2.5

2

x

0

3
2.5

2
1.5

1
0.5

0

learning sample

learning sample projected with
input adjustment learning

�

o
u
tp
u
t

�d

the line where � 	 �d

Figure !� Learning by interpolation� All learning samples are positioned on a hyperplane
�in the �gure shown in two dimensions�� The only part of the hyperplane that is used
for control of the robot arm describes� in the �gure� a line� Because of the increased
dimensionality of the plane� the learning samples are distributed around the line� instead
of on it�

��
�� Generating learning samples

The task of the network is to learn the relationship between the transition from ��i� to
��i � �� on the one hand� and ��i� to ��i � �� on the other� The neural network must be
trained to generate robot motion commands $��i� to control ��i� towards �d�i���� To teach
the neural network from the transition i� i� � we use the learning by interpolation

method�
In learning by interpolation �Smagt� Jansen� � Groen� ������ besides the robot state

��i�� not only the reference signals ��i� are input to the neural controller� but also their
desired values at i � �� �d�i � ��� The ideal controller C� would generate a correct $��i�
which makes ��i� �� � �d�i� ��� When the ��i � �� �� �d�i� ��� the generated $��i� was
not correct� but still it is known that the camera�robot system makes a transition from
��i� to ��i��� which can be used as learning sample� The closer ��i��� and �d�i���� the
more useful information this transition carries� In any case� a learning sample is available�
input ���i����i����i� ��� maps on $��i��

This process of generating learning samples is illustrated in �gure !� The learning
samples will� in general� be situated 
around� the line where ��i � �� � �d�i � ��� but
by interpolating those learning samples� an approximation for that line is assumed to be
generated�

Note that the dimensionality of the input space had been increased by the dimen�
sionality of �� leading to a sparseness of the learning samples� This sparseness can be
understood from �gure !� Samples are positioned on the hyperplane� whereas only the
values situated on the 
hyperline� are used by the controller�
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� Using visual feedback in robot control

��� An experimental setup I


���� Introduction

As concluded in the previous section� the visual observation that is minimally required to
grasp the object consists of the observed position ��x� �y� and area �A of an object projected
on the camera�s CCD� We will write � � ��x� �y� �A� to denote the visual observation�
Secondly� the position of the robot is described by its joint values � � ���� ��� ����

In this chapter� a neural controller will be constructed which� given the state �����
of the camera�robot system� generates a robot setpoint $� � �$���$���$���� to move
the system to the goal state� i�e�� reaching the state where

� � �d� �!�

When this state is reached� we say that the goal is attained� The desired visual state
is de�ned as �d � � �  ��A�desired�� i�e�� the object must be in the centre of the camera
image at the desired object size �A�desired� the latter requirement means that the distance
between the camera and the observed object agrees with some pre�speci�ed value� This
visual state �d is called the visual setpoint for ��

Open loop control� We are trying to construct an adaptive controller which generates a
robot joint rotation $� such that� when this rotation is applied to the robot� the observed
object will be located in the centre of the camera image at the prede�ned size� Using the
symbol N for the neural controller mapping which we are looking for� and R for the given
robot�camera mapping� the following two transformations are performed�

N ����� � $�

such that

R �����$�� �
�
�d��

�
�

where �d � � �  � A� and �� � ��$�� When N indeed generates the correct joint rotation
$� for all possible combinations of � and �� we call N the ideal controller and write C��
So� by de�nition

���� � R
�
���� C� ������ �� �

�d��
�
�
�

The neural controller N consists of a feed�forward neural network� N is being trained
from learning samples �����$�� from which it is known that

C� ����� � $��

The method for creating these learning samples is explained in section ������ In order to
�nd optimal weight values in the network� the Polak�Ribi&ere conjugate gradient learning
algorithm with Powell restarts is used �Smagt� ������

Closed loop control� However� N will in general not be equal to C�� There will always�
depending on the structure of the neural network and the optimisation method chosen�
remain an error in the approximation to the underlying function� It is therefore likely
that� when controlling the robot arm in an open loop� the hand�held camera loses track
of the object when it is approached� A single joint rotation which places the end�e�ector
only a few cm next to the target location will make that the camera does not see the

��



start

finish

��
�

����

����
���
�

�����

�����

���
�

���� ��
�

��i�� a position in joint space
�marked by a dot�

���i�� a move in joint space
�marked by an arrow�

Figure �� �D motion plan of the robot arm� A planned move $� is� in general� not
completed� While the robot is moving towards the new setpoint� a new setpoint is received�
and the motion plan is updated�

object anymore because it is outside the camera�s �eld of view� such that no information
at all is available about the correctness of the previous move� By using closed loop control�
thus adapting the path towards the object during the move� this problem is solved� We
introduce feedback in the control loop as follows� To indicate the sequence of control� the
variables �� �� and $� will be time�indexed� Thus we write�

N ���i����i�� � $��i��

Now� instead of waiting for the robot to complete the move $��i� until it is �nished� during
that move the state of the robot�camera system is measured anew and fed into the neural
controller�

N ���i� �����i� ��� � $��i� ���

The resulting joint rotation $��i��� is sent to the robot� which immediately changes the
trajectory it follows� This scheme is repeated until the target object is reached� Figure �
illustrates the feedback control in�uence on the trajectory followed by the robot arm�
Note that the delay between iteration i and i�� is not de�ned� it is dictated by the visual
processing and communication delays�

Why will the system be more accurate when a feedback loop is introduced
 There are
two reasons�

�� sensor readings close to the target are more accurate�

�� the approximation to the C� close to the target can be made more accurate� This is
done by increasing the sample density close to the goal state� this is automatically
obtained� since a successful grasping trail always ends in this goal state� thus creating
samples in that part of the input space�

The proposed experimental setup is shown in �gure �� At time i� the visual and robot
state are fed into the neural network� which generates a joint rotation� That rotation is
realised by the inverse robot dynamics module� which calculates torques to make the robot
move� One time slot later� new visual and robot state data are available and given to the
neural network�


���� Constructing the controller

In this section� the details of the implementation are discussed� A description of the
input%output behaviour� as well as a typical control loop� is given�

��



robot
dynamics

neural network robot
pre-

vision
pre-

processing

processing

z��

z��

��i�

��i�

���i�

��i� ��

��i� ��

Figure �� The experimental setup� The visual state ��i� and robot state ��i� are input to
the neural controller� which generates a joint rotation $��i�� The robot�s PID controller
�marked 
robot dynamics� in the �gure� calculates the required torques to make the robot
move� At the next step i� �� the new robot and visual state are available�

The neural network� The neural network consists of a feed�forward network trained
with conjugate gradient back�propagation as described in �Smagt� ������ The visual inputs
� and robot state inputs � together make ! network inputs �as discussed before� the
structure of the robot eliminates the use of �� as network input�� three outputs $��� $���
and $�� constitute the network output and are given to the robot as a rotation �delta joint
value� for joints �� �� and �� The visual input consists of the position ��x� �y� measured
in pixels relative to the camera centre� plus the area �A of the object� also measured in
pixels� With specialised hardware these quantities are measured in real time� i�e�� within
the time needed for grabbing one frame� At the time a frame is grabbed� and before the
position and area of the object are extracted� the robot position is measured and stored
in a register�

The neural network must learn the relationship between displacements in the visual domain
and displacements in the robot domain� This relationship is contained in the measured
visual data ��i� and ��i� �� in relation to the robot data ��i� and ��i� ���

Knowing that a robot move from ��i� to ��i� �� corresponds with an observed object
move from ��i� to ��i � ��� this data can be used in the construction of learning samples
which describe the actual behaviour of the camera�robot system�

Bins� The conjugate gradient method that is used to update the weights in the neural
network minimises the summed squared error over a set of learning samples� Therefore
the learning samples which are generated during control of the camera�robot system are
collected in bins�

When n steps are used to move towards the object� n� �n� �� learning samples can
be constructed� This can be seen from �gure �� for instance� apart from data obtained
from the move �� �� ���� and ����� ����� also the move �� �� ���� can be constructed
by combining the previous two moves� With a typical value of n set to �  � a single trial
may lead to nearly � �   samples� Clearly� the number of samples would grow quickly
out of bound� leading to unacceptable delays in the learning algorithm� when all learning
samples were kept�

Therefore a selective binning structure is set up as follows� Along each input dimension
d of the neural network �� � d � ! in this case� a partition into b�d� parts is made� This
partitioning leads to an !�dimensional structure of bins� a hypercube� When a learning
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sample is available� its input values uniquely determine which bin in the hypercube this
learning sample �ts in� When the corresponding bin is empty� the new sample is put in it�
otherwise the sample in that bin is replaced by the new sample� Thus each bin contains
only one learning sample�

An obvious advantage of the hypercube method to store the samples is that a uniform
or otherwise desired distribution of the learning samples can be realised� This means that
the neural network approximation will not lose accuracy in those parts of the input space
which have not been visited for a long time�

Learning samples� The neural networkN �	� is trained with learning samples �����$���
Unfortunately� it is not possible to analytically compute a $� from a given ������ since
that would require knowledge of the ideal controller C�� How can learning samples be
constructed
 In learning by interpolation the inputs to the neural controller do not only
consist of ��i� and ��i� but also �d� The network� which we will indicate by N �� thus has
eight inputs and three outputs� The task of the network is to generate a joint rotation

N � ���i����i���d� � $��i�

such that

R ���i����i��$��i�� � ��d���i� ��� �

The learning samples that are gathered� however� give information how the robot moves
from ��i� to ��i � ��� where ��i � �� need not coincide with �d� Thus the neural network
learns the mapping

N � ���i����i����i� ��� � $��i�

such that

R ���i����i��$��i�� � ���i� �����i� ��� �

This has the advantage that the neural controller can be used to move the robot to any

target point� and that certain systematic errors �e�g�� from the camera� are taken care of�


���
 The control loop

In the �rst setup we are faced with the following system�

�� set i � �� and set all measurements at i �  to zero� Set $���� to a small random
value�

�� the robot control command �desired joint position� �d�i� is sent to the robot� and
the robot moves�

�� the robot records the current joint values ��i�� as well as an image I from which the
visual data ��i� are extracted� The � consists of � � ��x� �y� �A� where

�x � x coordinate of target object in image

�y � y coordinate of target object in image

�A � observed area �' pixels� of target object in image�

�� we know that the robot moved from joint position ��i� �� with joint rotation $��i��
and at the same time the visual data changed from ��i��� to ��i�� From this we can
construct the following learning sample�

C����i� ����d�i����i� ��
�
� $��i��
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Figure �� Grasping error in cm with the simulated robot after � �left column�� � �second
column�� and � �third column� steps� On the horizontal axes� the number of goals is
plotted� The desired accuracy was a Euclidean distance of  �!cm between the end�e�ector
and the target object� Top row� Initial learning� results when learning from scratch�
Bottom row� After initial learning� rotation of the camera by �!��

!� in the neural network are fed the visual and positional information ��i� and ��i�� as
well as the desired visual data at i��� �d�i���� In this case� � is a context variable

while � is the control variable� The network generates an output

N �
�
��i���d�i� �����i�

�
� �d�i� ���

�� i
 i� �� goto ��


���� Results

Results are shown in �gure �� The average error in the �rst step is less than �cm and in
two steps approximately �mm� Note that after a few iterations� the target can already
be reached in the feedback loop� such fast learning makes the method very well suited for
real applications�

Secondly� the method�s adaptability is tested� The state of the network after the initial
�  goals is taken as the begin state� The system is changed by rotating the hand� and
hence the hand�held camera� by �!�� The result is shown in the bottom row of �gure ��

��� An experimental setup II


���� Introduction

The approach shown in the previous section has been demonstrated to be successful in
practice� However� we made one simpli�cation� it was assumed that the dimensions of the
target object were known�

When the dimensions of the object are unknown� and vary from one run to another�
this approach cannot be used� However� we can still use monocular vision� by use of optic
�ow�

�!



Figure �� The gannet�

Optic �ow� which is de�ned as the motion of the observer�s
environment projected on its image plane� is in fact much more
commonly used by living organisms than information obtained
from static retinal patterns� The fact that optic �ow is fun�
damental to vision has only been realised since the pioneering
work of Gibson �Gibson� ��! �� For instance� the gannet� when
feeding itself� dives down in the water� During the dive� the
bird needs its wings to adapt its path to the motion of the �sh�
however� at the moment of contact with the seawater its wings
must be folded to prevent them from breaking� It has been
shown that the time remaining between the moment that the bird folds its wings� and
that it hits the water� is always the same for one particular bird� It is not controlled
by its height or velocity separately� but the quotient of the two� This remaining time is
known as the time�to�contact and indicated by the symbol �� When the system is not
accelerating� � is given by the quotient of the distance from an approaching surface and
the velocity towards it� Exactly the same information can be obtained from the divergence
of the approaching surface �Koenderink � Doorn� ���!� Lee� ��� �(a feature that can be
observed monocularly�

Since this bird cannot measure its velocity� it measures the time until it hits the water
from time derivatives of the visual observation� It is this mechanism that underlies the
method presented in this paper for controlling a monocular robot arm such that it 
lands�
on an object� An ordinary grasping task can be described as� at some time� the distance
between the object and the hand�held camera must be zero� We go one step beyond that
requirement� the distance must be zero at some time �which� we now know� is related
to the time�to�contact�� while the system must be at rest� the velocity� acceleration� and
higher derivatives must also be zero� We will call this the goal state� But this can be
seen as the endpoint of a trajectory towards that point in time� In the case of the bird�
the decision to fold its wings can be made with the available visually measured quantities�
In the sequel it will be shown that by extending the above example to higher�order time
derivatives of the visual data� criteria can be developed which specify a trajectory which
ends in a rest state �i�e�� zero velocity� acceleration� etc�� at the end point� These criteria
will lead to visual setpoints along the followed trajectory� and are used as inputs to
a neural controller which must generate robot joint accelerations in order to follow the
setpoints in visual domain� Thus it is possible that the eye�in�hand robot arm exactly
stops on an observed object by use of optic �ow� By using time derivatives of the visual
�eld we obtain to an important advantage� the model of the object is not needed to obtain
depth information� The system need not be calibrated for each object that has to be
grasped� but can approach objects with unknown dimensions�


���� Theoretical background

We can describe the motion of the camera(and� with it� the robot�s end�e�ector(as a
trajectory xr in world space� This trajectory is known in terms of the robot variables ��
i�e�� we know this trajectory in terms of a sequence of robot joint positions�

Secondly� we can describe the position of the target object as xo� this position is
unknown and cannot be measured� since we have only a single camera and do not know
the dimensions of the object� Recalling equation ���� we cannot even measure the position
of the object with respect to the camera� if the object appears four times as small as
before� it can be twice as far away� or four times as small� or any mixture of those two�

Let us de�ne d�t� � xr�t� � xo� the unknown quantity d�t� is the distance between

��



the robot and object at time t� The grasping task can be formulated as reaching the
robot position ��� � at some desired time � where d�t � �� � �� That is� at some time

� and thereafter the position must be zero� This can be realised when we require that
d��� as well as its derivatives are zero at � � after all� when its derivatives are zero at that
moment� d��� will remain zero� The system will remain in rest� We call this the stopping
criterion�

Assume that we describe each of the components of d�t� �i�e�� the x� y� and z component
as well as any rotational components� by a Taylor series�

d�t� �

nX
j��

ait
j � 	� ���

The above stopping criterion can now be expressed as

� � k 
 n � d�k	��� �

nX
j�k

j"

�j � k�"
aj�

j�k �  � ���

It can be shown �Smagt� ���!� that this leads to the following constraints on the parameters
aj �

� � k 
 n �
an�k��
n ak

an�k
n��

�
�

nn�k

�
n

k

�
� ���

Getting the visual data� Now� how are the aj�s related to the visual data that we can
measure
 Taking ��� into account again� we know that we can visually determine

�x�t� � f
dx�t�

dz�t�
� �y�t� � f

dy�t�

dz�t�
� �A�t� �

f�A

dz�t��
�

When we de�ne

��x�t� �
dx�t�p

A
� ��y�t� �

dy�t�p
A

� ��z�t� �
dz�t�

f
p
A

���

then again we can make Taylor polynomials for ��t� such that

��t� �

nX
i��

�it
i � o�tn� �� �

where ��t� is either ��x�t�� �
�

y�t�� or �
�

z�t�� Similarly� �i indicates the x� y� or z parameters�
Once the parameters �i are known� the polynomials for ��x�t�� ��y�t�� and �z�t� are

known� Knowledge of these parameters� however� does not give su	cient information
on the position� velocity� etc� of the end�e�ector relative to the object� since they are
scaled by the constants A and f � However� the constraints can still be expressed in visual
parameters� using the polynomial expansions for d�t� and ��t�� and combining these with
equations ���� the �i�s have a common constant

�i � cai ����

where c is cx� cy� or cz for the x� y� and z components of d� given by

cx � A����� cy � A����� cz � �f�A������ ����
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When we take ��� into account� we see that it can be rewritten as

� � k 
 n �
�n

n�k���k
�n��

n�k
�

�

nn�k

�
n

k

�
� ����

Since the equation contains the fraction cn��

cn�� � the unknown constants disappear and we
can determine ���� from visual measurements�

However� there are some problems with this equation� First� in a real�world system we
would usually try to control second� or third�order trajectories� i�e�� n � � or n � �� This
means that we have to visually determine ��� ��� ��� and perhaps ��� Knowing that the
visual frame rate is low� and that visual data contains large amounts of noise� calculating
�� is tough and �� is prohibitive�

Secondly� we cannot control the time that the trajectory lasts� This is determined by
the initial conditions� for instance� if the robot initially moves fast and is not far away
from the object� the trajectory will be quickly traversed� This poses a problem when the
trajectory time di�ers for the x� y� and z components of the motion� it would be better if
the robot arm moves in a straight path towards the object�

To solve both of these problems we introduce an extra constraint� Since d�t� is ap�
proximated by a polynomial of order n� the nth derivative of the approximation of d�t�
must be constant in time� an is constant� Therefore� the n � �st must be linear in time�
Consequently� the time to bring the n� �st derivative to  is equal to the quotient of the
two� For n � �� this is the velocity divided by the acceleration� In the general case�

� � �an��

nan
� ����

This can be combined with the constraints ���� such that the system is now faced with n
non�trivial constraints�

an
n�k��ak

an��
n�k

�
�

nn�k

�
n

k

�
�  � k 
 n� and �d � �an��

nan
� ��!�

These constraints can be rewritten as

ak
an��

� ���d�
n�k�� �

n

�
n

k

�
�  � k � n� ����

Similar to the time�independent case� satisfying these n non�trivial constraints leads to
the desired trajectory� However� the constraints are all related and a simpli�cation is in
order�

Consider once again the polynomial expansion of d�t� in ���� This polynomial expan�
sion of order n is globally valid over the whole time interval� i�e�� the whole trajectory
of the robot arm� After splitting up the global time axis in intervals� the d�t� can be
repeatedly approximated in these intervals by polynomials with parameters aj �i�� These
approximations are written as

d�i��t�i�� �

nX
j��

aj �i�t�i�
j � �� ����

Note that d�t� � d� ��t� ��� but that the parameters aj �i� are in general not equal to
aj �i���" The starting time t at which the d�i� and thus the aj�i��s are de�ned is repeatedly
changed�
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As set out above� the task of the feed�forward based neural controller is to make the
robot manipulator follow a pre�speci�ed trajectory� During a time interval i the system
measures the ��i� �note that� due to the discrete�step feedback loop� the � are now discrete
variables indexed by the step number instead of varying continuously in time�� From these
measurements the controller generates joint accelerations ���i � �� and sends them to the
robot� This marks the beginning of a new time interval i� ��

Now� by using the repeatedly updated d�i�� we can combine the constraints ��!� and
�nd the simpli�ed form

a��i�

a��i�
� ���d � t�i��

n
� �i �  � i 
 
� ����

where 
 � n and ��d � t�
�� �  � The proof of this theorem can be found in �Smagt� ���!��
We will refer to ���� as the time�dependent constraint�

The time�dependent constraint is obtained by extending the local time intervals to�
wards the moment when ��d � t�i�� �  � Although the d�i��t�i�� is a local approximation� we
can just pretend that it �ts the whole d�t� starting at t�i� �  � and let the time�dependent
constraint be valid for that trajectory�

�d Is usually chosen equal for the x� y� and z components of d�t�i��� to ensure that all
components go to zero at the same time�


���
 The control loop

The time�dependent constraint ���� is used in a controller as follows�

�� set i � �� and set all measurements at i �  to zero� Set ��d��� to a small random
value�

�� the robot control command �desired joint acceleration� ��d�i� is sent to the robot� and
the robot moves�

�� the robot records the current joint values ��i� from which the ���i� and ���i� are
computed� as well as an image I from which the visual data ��i� are extracted� The
� consists of � � ��x� ��x� �y� ��y� �A� ��A� where

�x � x coordinate of target object in image

�y � y coordinate of target object in image

�A � observed area �' pixels� of target object in image�

�� Set r�i� � a��i��a��i�� ��d � t�i���n for the x� y� and z directions�

we know that the robot moved from joint position ��i� �� with joint rotation �d�i��
and at the same time the visual data changed from ��i��� to ��i�� From this we can
construct the following learning sample�

C��r�i� ��� r�i����i� ��� ���i� ��� ���i� ��
�
� ��d�i��

!� Apply the newly measured data to the network� The network generates an output

N
�
r�i��  ���i�� ���i�� ���i��

�
� ��d�i� ���

�� i
 i� �� goto ��

The control loop is depicted in �gure � �
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Figure � � The structure of the time�to�contact control loop�
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Figure ��� Distance and velocity at � �  � The left �gure shows the distanceq
d�� �  ��x � d�� �  ��y � d�� �  ��z between the end�e�ector and the approached object�

The right �gure shows the velocity
q

�d�� �  ��x �
�d�� �  ��y �

�d�� �  ��z of the end�e�ector

in cm%tick� Typical end�e�ector velocities during the trajectory are between  �! and �� �
The horizontal axis indicates the trial number�


���� Results

In order to measure the success of the method while applied to the simulated robot� we
measure the d�t�� �d�t�� and �d�t� during the trajectory� with the simulator� these data are
available� A correct deceleration leads to a d�t� � �d�t� �  when �d �  � i�e�� at the end
of the trajectory� The results of a run with the simulated OSCAR robot are shown in
�gure ��� This graph shows the distance between the end�e�ector and the target object at
�d �  � The results show that after only a few trials �in this case� ��� the positional error
at ��d � t� �� �  is below one millimeter� while the velocity is below  ��cm per simulator
time unit �typical end�e�ector velocities during deceleration are  �!��� cm per simulator
time unit��

Figure �� shows the results of the control algorithm when tested with di�erent noise
levels� Noise is present in the measurements� and also in the learning samples which are
taught to the neural network� A graceful degradation is shown up to very high noise levels�
as high as � times the expected amount of noise�
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Figure ��� Results of the simulation when noise in the visual input is applied� The �gure

shows the distance
q

d�� �  ��x � d�� �  ��y � d�� �  ��z between the end�e�ector and the

approached object averaged over �  goals �marked by dots in the graph�� The vertical
axis shows the noise level l� The �gure clearly shows that the noise level and the grasping
error are linearly related� At values of l � � the signal�to�noise ratio is thus large that the
system cannot always reach the target at �d �  � but sometimes overshoots� The average
error at l � � goes up to �� cm� at l � � it is as high as �� due to overshoots�
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