Convolutional Neural Networks Learn Compact
Local Image Descriptors

Christian Osendorfer, Justin Bayer, Sebastian Urban,
and Patrick van der Smagt

Technische Universitat Miinchen, Fakultat fiir Informatik, Lehrstuhl fiir Robotik
und Echtzeitsysteme, Boltzmannstrafie 3, 85748 Miinchen
osendorf@in.tum.de, bayer.justin@googlemail.com, surban@tum.de, smagt@tum.de

Abstract. We investigate if a deep Convolutional Neural Network can
learn representations of local image patches that are usable in the impor-
tant task of keypoint matching. We examine several possible loss func-
tions for this correspondance task and show emprically that a newly
suggested loss formulation allows a Convolutional Neural Network to
find compact local image descriptors that perform comparably to state-
of-the-art approaches.
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1 Introduction

Local image descriptors are an important component of many Computer Vi-
sion algorithms. They are central to a wide range of Computer Vision tasks
like tracking, stereo vision, panoramic stitching, structure from motion or ob-
ject recognition. Given these widely differing types of use cases, a local image
descriptor should be invariant to image, appearance, viewpoint and lightning
variations of a local image patch.

Over the last decade many different descriptors have been developed. Several
of these are hand designed, with SIFT [1] being the most popular example. In
recent years these engineered descriptors where accompanied by approaches that
are based on discriminant learning techniques [2-5]. The general motivation be-
hind these methods is that by exploiting statistical properties of image patches
through learning, the resulting descriptor is more robust to the previously men-
tioned variations an image patch can be exposed to.

Tracing back our work to [6], this paper tries to extend the recent success
story of Convolutional Neural Networks [#H9] to learning compact local image
descriptors. In a series of experiments, we investigate various aspects (different
cost functions, different non-linearities, depth) of models based on Convolutional
Neural Networks. It turns out that with the correct cost function, Convolutional
Neural Networks find compact image descriptors that perform competitively
or even better than state-of-the-art algorithms on a challenging benchmark for
keypoint matching [3].
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Related Work. Similar to our work, [3-5] rely on supervised learning ap-
proaches to find compact local image descriptors. These methods suggest differ-
ent pooling and selection strategies of gradient-based features to learn discrimi-
nant descriptors, utilizing boosting |4] or sparse convex optimization [5].

Most similar to our work is [10]. Like us |L0] uses a Convolutional Neural
Network to learn an encoding for an image patch. However, [10] investigated the
applicability of their learnt descriptors only for planar transformations and only
compared their performance to SIFT. As it turns out the objective function to
train the whole model used in [10] would not be competitive to state-of-the-art
approaches on the challenging dataset used in our paper. And finally, |[10] relies
on gradient based input features on various scales while our algorithm works
directly on pixel intensities.

2 General Learning Architecture

A good description of a local image patch is characterized by the fact that cor-
responding image patches are represented by descriptors that are close-by under
some metric. Correspondence is thereby defined by the various kinds of invari-
ances listed in the first paragraph of section 1. Clearly, the goal of any learning
algorithm in this domain is then to find representations together with the ac-
companying metric that performs well on labeled image pairs (corresponding vs.
non-corresponding pairs).

DrLim [6] is a framework for energy based models that learn representations
using only such correspondence relationships. We utilize DrLim in order to learn
low-dimensional mappings for low-level image patches.

The main idea behind DrLim is to map similar (i.e. corresponding) image
patches to nearby points on the output manifold and dissimilar image patches
to distant points. DrLim is defined over pairs of image patches, 21 and x5. The
i-th pair (z¢,2%) is associated with a label 3%, with y* = 1 if 2! and % are
deemed similar and y* = 0 otherwise. We denote by d(z1, z2;6) the parameter-
ized distance function between the representations of £y and x5 that we want to
learn. Based on d(z1, z2;60) we define DrLim’s loss function £(6):

(o) = Z Yl (d(@, 25;0)) + (1 — y") b (d(z], 253 0)) (1)

We denote with £py1(-) the partial loss function for similar pairs (it pulls similar
pairs together) and with fpen () the partial loss function for dissimilar pairs
(it pushes dissimilar pairs apart). Several possible choices for ¢pn(-) and £psn
(denoted by C;) are investigated in this text:

— C1 — the original paper for DrLim [6] defined £p(+) and £psn as follows:

Con(d(w1,72;0)) = cond(z1, 223 0)? (2)

Cosh(d(z1,22;0)) = cpsn[max(0, mpsh — d(z1, T2; 0))}2 (3)
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Mpsh is & push margin: Dissimilar pairs are not pushed farther apart if they
already are at a distance greater than mpgn. cpn and cpen are scaling factors,
both set to 5 in [6].

— Cy — [10] uses the definitions from [11]:

gpu(d(.’bl,.’bg;a)) = ;d($1,$2;9)2 (4)

lpsh(d(z1,22;0)) = 2Q exp(7257d(x1,x2;9)) (5)

The constant @ is set to the upper bound of d(z1,x2;0).
— C3 — the exponential loss from [4]:

Con(d(z1, 723 0)) = exp(y'd(w1, w2;0)) (6)

Cpsh(d(z1,22;0)) = exp(y'd(x1,2;0)) (7)

where ' = 2y — 1 and y indicates whether a given x; and x5 are a corre-
sponding pair or not, i.e. y’ € {—1,1}

— C4 — in this paper we investigate a combination of a hinge-like loss function
for £pn with pen set as in [6]:

Con(d(z1, z2;0)) = cpn[max(0, d(z1, z2;0) — mpn)] (8)

Z1osh(d(xlvgc?§ 0)) = Cpsh [max(0, Mpsh — d(x1, T2; 9))}2 9)

mp is a pull margin: Similar pairs are pulled together only if they are at a
distance above mp.

For a complete definition of £(0) we still need d(z1,z2;0): for Cy,Cs and Cy it
is defined as the Euclidean distance between the learned representations of x
and xo:

d(w1,22;0) = || f(21;0) — f(z2;0)]]2 (10)
For C5 it is defined as
d(w1,22;0) = || f(21;0) — f(22;0)l1 (11)

In both cases f(-) denotes the mapping from the (high-dimensional) input
space to the low-dimensional representation space. In this paper, f(-) is a Con-
volutional Neural Network.

2.1 Convolutional Neural Networks

A Convolutional Neural Network [7] is a special kind of neural network for work-
ing with images. It is composed of multiple layers, where the output of every
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layer is a set of two dimensional arrays called feature maps. A feature map is pro-
duced by convolving the respective input with a filter, followed by a non-linear
function and a pooling layer. Within the DrLim framework the same network
is applied to two different inputs in order to compute the loss for this input
pair (see equation [I0]). Therefore, the architecture is sometimes called a siamese
network [12, [13]. In this work we investigate two aspects of a configuration of a
Convolutional Neural Network:

— non-linearities: we compare the standard tanh(-) and the currently often used
rectifying linear unit [9].
— depth: we compare models with three and four layers.

3 Experiments

We use the dataset from [3] for evaluating various instances of Convolutional
Neural Networks. In contrast to previous approaches actual 3D correspondences,
obtained via a stereo depth map, are used for generating this dataset. This al-
lows learning descriptors that are optimized for the non-planar transformations
and illumination changes that result from viewing a truly 3D scene. The dataset
is based on more than 1.5 million image patches (64 x 64 pixels) of three differ-
ent scenes: the Statue of Liberty (about 450,000 patches), Notre Dame (about
450,000 patches) and Yosemites Half Dome (about 650,000 patches). We denote
these scenes with LY, ND and HD respectively. There are 250000 corresponding
image patch pairs and 250000 non-corresponding image patch pairs available for
every scene. We train on one scene and evaluate the learned embedding func-
tion on the other two scenes. Evaluation is done on the same test sets (50000
matching and non-matching pairs) used also by other approaches.

We achieve the best results on this benchmark with a Convolutional Neu-
ral Network paired with the loss function Cy. The network has 4 convolutional
layersﬂ and uses the tanh non-linearity. Moreover, Table [[l shows that this Con-
volutional Neural Network (the entry denoted CNNI) performs comparably to
other state-of-the-art approaches in terms of the 95% error rate which is the
percent of incorrect matches when 95% of the true matches are found: After
computing the respective distances for all pairs in a test set, a threshold is deter-
mined such that 95% of all matching pairs have a distance below this threshold.
Non-matching pairs with a distance below this threshold are considered incor-
rect matches. Figure [I] shows the ROC curves of CNN1 for the three different
training settings.

In order to avoid unnecessary clutter, we describe only qualitatively the results
of comparing different settings for loss functions, non-linearities and depth:

190 feature maps with kernel size 5 x 5 followed by a (2,2) max pooling; a second
convolutional layer, again with 20 feature maps and kernel size 5 X 5 and (2, 2) max
pooling; a third convolutional layer, again with 20 feature maps and kernel size 4 x 4
and (2,2) max pooling; and a fourth convolutional layer with 64 feature maps and
kernel size 5 X 5.
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— Loss functions: Cy performed at least by 2% — 3% better than Cy, Cs or Cs.
The idea of having a pull margin myy is crucial for the good performance
of C4. Without it, a noticeable performance drop happens. Interestingly,
the results from the original DrLim formulation (C;) can be improved by

utilizing a pull margin, too.

— Non-linearities: Contrary to recent reports [9] on good performance due to
linear rectifying units, the networks with a tanh non-linearity performed at
least by 5% better than those a the linear rectifying unit.

— Depth: We also tested a Convolutional Neural Network with 3 layers (the
total number of parameters was similar to the network with 4 layers). The
4 layer network outperformed this network by approximately 1% — 1.5%.

Table 1. Error rates, i.e. the percent of incorrect matches when 95% of the true matches
are found. Every subtable, indicated by an entry in the Method column, denotes a
descriptor algorithm. The line below every method denotes the size of the descriptor
(e.g. 32d denotes a 32 dimensional descriptor). The 128 dimensional SIFT descriptor [1]
does not require learning (denoted by — in the column Training set). The numbers in
the columns labeled LY, ND and HD are the error rates of a method on the respective
test set for this scene. [3, 5] do not have results when trained on the LY scene (indicated
by x). L-BGM is presented in [4]. CNN2 is trained on two out of the three datasets,

see section 3.1

Test set
Method Training set LY ND HD
SIFT - 31.7 22.8 25.6
LY ~ 141 196
L-BGM 180 — 15.8
(64d)  gp 21.0 137 —
LY - X X
3] ND 168 — 135
(20d)  gp 182 119 -
LY - X X
[5] ND 145 — 125
(29d)  gp 174 96 —
LY ~ 101 17.6
CNN1 - \p 146 - 15.3
(32d)  pp 176 95 —
LY/ND -~ 123
CNN2 - 1y/HD - 73 -
(32d)  Np/HD 133 -~ -
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Every image patch is preprocessed by subtracting its mean and dividing by
its standard deviation. All models are trained with standard gradient descent.
Training stops when a local minimum of the DrLim objective is reached. We
never faced the problem of overfitting (probably because the number of parame-
ters is very small compared to the size of the training set), and thus did not use
a validation set. Instead we observed that using a validation set had a negative
effect on our final results — the data in the validation set is more useful for actual
training. Finally, the hyperparameters for C4, namely cpn, cpsh, Mpn and mpsh
are 0.5, 3, 1.5, and 5 respectively. Notably, these hyperparameters are not scene
dependent.

ND)
— HD|

=
00 01 02 03 04 05 06 07 08 09 10 00 01 02 03 04 05 06 07 08 09 10 05 o1 0z 03 04 05 06 07 08 03 10
(a) Training set: LY (b) Training set: ND (c) Training set: HD

Fig. 1. True Positive Rates and False Positive Rates for CNNI. A plot is denoted by
its training set and shows the ROC curves on the two remaining test sets. Best viewed
in color.

3.1 Data Augmentation

Convolutional Neural Networks benefit from abundant data. A successful method
to artificially enlarge the available amount of data is to generate new input data
by applying different kinds of transformations to the original dataset [8,19]. Yet,
we did not manage to improve the error rates that we achieve on the original
dataset with this approach. However, utilizing data from two scenes improves
error rates noticeably: we train on two scenes and evaluate on the remaining
one. Following this approach, we are able to improve our error rates by at least
2% (see Table 1, last entry, CNN2).

4 Conclusion and Future Work

In this short paper we showed empirically that a standard Convolutional Neural
Network, equipped with a suitable loss function, can find compact representa-
tions for local image patches: on a challenging dataset for keypoint matching we
were able to perform at least as well as state-of-the-art approaches.

The appeal of a simple parametric model like a Convolutional Neural Network
is that it does not require any complex parameter tuning or pipeline optimizations
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and that it can be integrated into larger systems that can then be trained in an
end-to-end fashion [14]. To be more concrete, the 32 dimensional descriptor pro-
posed in this paper can be used to define a dense representation of an arbitrary
image. This dense representation is then fed into another Convolutional Neural
Network for e.g. image segmentation [15], which can tune the low-level represen-
tations for the specific task at hand through straightforward backpropagation.

Acknowledgments. Sebastian Urban was supported by German Research
Foundation (DFG) SPP 1527 Autonomes Lernen.
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