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Abstract. The problem of anomaly detection is a critical topic across
application domains and is the subject of extensive research. Applica-
tions include finding frauds and intrusions, warning on robot safety, and
many others. Standard approaches in this field exploit simple or complex
system models, created by experts using detailed domain knowledge.
In this paper, we put forth a statistics-based anomaly detector motivated
by the fact that anomalies are sparse by their very nature. Powerful spar-
sity directed algorithms—namely Robust Principal Component Analysis
and the Group Fused LASSO—form the basis of the methodology. Our
novel unsupervised single-step solution imposes a convex optimisation
task on the vector time series data of the monitored system by employ-
ing group-structured, switching and robust regularisation techniques.
We evaluated our method on data generated by using a Baxter robot
arm that was disturbed randomly by a human operator. Our procedure
was able to outperform two baseline schemes in terms of F1 score. Gen-
eralisations to more complex dynamical scenarios are desired.

1 Introduction

The standard approach to describing system behaviour over time is by devising
intricate dynamical models—typically in terms of first- or second-order di↵eren-
tial equations—which are based on detailed knowledge about the system. Such
models can then help to both control as well as predict the temporal evolution
of the system and thus serve as a basis to detect faults.

We investigate the common case where models are either di�cult to obtain or
not rich enough to describe the dynamic behaviour of the nonlinear plant. This
can happen when the plant has many degrees of freedom or high-dimensional
sensors, and when it is embedded into a complex environment. Such is typically
true for robotic systems, intelligent vehicles, or manufacturing sites; i.e., for a
typical modern actor–sensor system that we depend on.

In such cases, the quality of fault detection deteriorates: too many false pos-
itives (i.e., false alarms) make the fault detection useless, while too many false
negatives (i.e., unobserved faults) may harm the system or its environment.
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Rather than fully trusting incomplete models, we put forth a methodology which
creates a probabilistic vector time series model of the system from the recorded
data and detects outliers with respect to this learned model. Following standard
procedures [4], detecting such outliers will be called anomaly detection.

This type of detection is notoriously di�cult as it is an ill-posed problem.
First, the notion of anomaly strongly depends on the domain. Then, the bound-
ary between “normal” and “anomalous” might not be precise and might evolve
over time. Also, anomalies might appear normal or be obscured by noise. Finally,
collecting anomalous data is very di�cult, and labelling them is even more so
[4]. Two observations are important to make: (i) anomalies are sparse by their
very nature, and (ii) in a high-dimensional real-world scenario it will not be pos-
sible to rigorously define “normal” and “anomalous” regions of the data space.
We therefore focus on an unsupervised approach: in a single step, a probabilis-
tic vector time series model of the system’s data is created, and (patterns of)
samples that do not fit in the model are conjectured to be the sought anomalies.

In this paper we introduce a new two-factor convex optimisation problem us-
ing (i) group-structured, (ii) switching, and (iii) robust regularisation techniques;
aiming to discover anomalies in stochastic dynamical systems. We assume that
there is a family of behaviours between which the system switches randomly. We
further assume that the time of the switching is stochastic, and that the system
is coupled, i.e., both switching points and anomalies span across dimensions.
Given that the general behaviour between the switches can be approximated
by a random parameter set defining a family of dynamics, we are interested in
detecting rare anomalies that may occur with respect to the “normal” behaviour
(hence there are two factors). To the best of our knowledge, the combination of
the techniques (i)–(iii) is novel.

To test our methods and demonstrate our results, we generated data with a
Baxter robot. This system serves as a realistic place holder for a general system
with complex dynamics in a high-dimensional space, in which the data cannot
be easily mapped to a lower-dimensional plane, while the sensory data are not
trivial. We generate realistic anomalies by having the robot perform predefined
movements, with random physical disturbances from a human.

2 Theoretical Background

2.1 LASSO and Group LASSO

LASSO [9] is an `1-regularised least-squares problem defined as follows. Let
D < N and let us denote an input vector by x 2 RD, an overcomplete vector
system by D 2 RD⇥N , a representation of x in system D by a 2 RN , a tradeo↵
of penalties by �. Then LASSO tries to find

min
a

1

2
kx�Dak22 + �kak1, (1)

which—for a su�ciently large value of �—will result in a gross-but-sparse rep-
resentation for vector a: only a small subset of components ai will be non-zero
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(but large) while the corresponding columns D.,i will still span x closely. Model
complexity (sparsity) is implicitly controlled by �. LASSO is the best convex
approximation of the NP-hard `0 version of the same problem, since convexity
ensures a unique global optimum value and polynomial-time algorithms grant
one to find a global solution [5, 3].

A useful extension to LASSO is the so-called Group LASSO [11]: instead of
selecting individual components, groups of variables are chosen. This is done by
defining a disjoint group structure on a (or equivalently on the columns of D):

Gi ✓ {1, . . . , N}, |Gi| = Ni, i = 1, . . . , L, (2)

Gi \Gj = ;, 8i 6= j, (3)

L[

i=1

Gi = {1, . . . , N}. (4)

Then one can impose a mixed `1/`2-regularisation task:

min
a

1

2
kx�Dak22 + �

LX

i=1

kaGik2, (5)

where aGi denotes the subset of components in a with indices contained by
set Gi. The last term is often referred to as the `1,2 norm of a. Thus the ele-
ments from the same group are either forced to vanish together or form a dense
representation within the selected groups, resulting in so-called group sparsity.

2.2 Robust Principal Component Analysis

Similarly to the LASSO problem, one can define an `1 norm-based optimisation
for compressing the data into a small subspace in the presence of a few outliers.
Let k·k⇤ and kvec(·)k1 denote the singular valuewise `1 norm (nuclear norm) and
the elementwise `1 norm of a matrix, respectively. Then the Robust Principal
Component Analysis (RPCA) [2] task for givenX 2 RD⇥T and unknownsU,S 2
RD⇥T is as follows:

min
U,S

1

2
kX�U� Sk2F + �kUk⇤ + µkvec(S)k1, (6)

where U is a robust low-rank approximation to X, gross-but-sparse (non-
Gaussian) anomalous errors are collected in S, and k · kF denotes the Frobe-
nius norm. Then as a post-processing step, singular value decomposition can be
performed on the outlier-free component U = W⌃VT , resulting in a robust
estimate of rank k 2 N. Note that the classical Principal Component Analysis
(PCA) of the input matrix X would be vulnerable to outliers.

2.3 Fused LASSO and Group Fused LASSO

LASSO can also be modified to impose sparsity for linearly transformed (Q 2
RT⇥M for arbitrary M) components of v 2 RT :

min
v

1

2
ky � vk22 + �kQTvk1. (7)
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In the special case when y 2 RT is a time series and Q is a finite di↵erencing
operator of order p, this technique is called Fused LASSO [10] and yields a
piecewise polynomial approximation of v of degree (p�1). One can also consider
the version when y is replaced with a multivariate time series X,V 2 RD⇥T :

min
V

1

2
kX�Vk2F + �kvec(VQ)k1. (8)

Change points can be localised in the di↵erent components and by assuming a
coupled system, change points may be co-localised in time. The formulation that
allows for such group-sparsity is the `1,2 norm of Group LASSO:

min
V

1

2
kX�Vk2F + �

T�pX

t=1

kVQ.,tk2 (9)

for order of di↵erentiation p (with M = T � p) [1].

3 Methods

3.1 Problem Formulation

We assume that there is a piecewise polynomial trajectory in a multi-dimensional
space, like the motion of a robotic arm in configuration space. We also assume
that the robot executes certain actions one-by-one, e.g., it is displacing objects
giving rise to sharp changes in the trajectory. However, we are not aware of
the plan and we have no additional information and thus, we do not know the
points in time or space when the trajectory would switch. These points will be
called switching points or change points. Yet we know that such change points of
di↵erent configuration components are co-localised in time (i.e., the plan spans
across dimensions).

We also assume that at random times an anomaly disturbs the motion, but
the system compensates, reverts back to the trajectory, and executes the task.

We propose to use the following `1,2, `1,2 convex optimisation problem for the
detection of the above kind of anomalies. With known X 2 RD⇥T and variables
V,S 2 RD⇥T , solve

min
V,S

1

2
kX�V � Sk2F + �

T�pX

t=1

kVQ.,tk2 + µ
TX

t=1

kS.,tk2, (10)

where Q is a finite di↵erencing operator. For the sake of simplicity, we assume
that order of Q is p = 2:

Qd,t =

8
><

>:

1, if d = t or d = t+ 2,

�2, if d = t+ 1,

0, otherwise.

(11)
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This is a combination of the Robust PCA and the Group Fused LASSO tasks: it
tries to find a robust piecewise linear approximation V and additive error term S
for X with group-sparse switches and group-sparse anomalies that contaminate
the unknown plan. The second term says that we are searching for a fit, which
has group-sparse second-order finite di↵erences. The third term (S) corresponds
to gross-but-group-sparse additive anomalies not represented by the switching
model.

We also use the corresponding `1, `1 variant as a comparison:

min
V,S

1

2
kX�V � Sk2F + �kvec(VQ)k1 + µkvec(S)k1, (12)

which allows change points and anomalies to occur independently in the com-
ponents (via ordinary sparsity instead of group-sparsity).

We used Matlab R2014b with CVX 3.0 beta [6, 7] for minimisations, capable
of transforming cost functions to equivalent forms that suit fast solvers, e.g., the
Splitting Conic Solvers (SCS) 1.0 [8] and used the sparse direct linear system
option.

Dependencies on the (�, µ) tuple were searched on the whole data set within
the domain of {2�9, 2�7, . . . , 215} ⇥ {2�16, 2�14, . . . , 28}. The best values were
selected according to the F1 score, the harmonic mean of precision and sensi-
tivity: F1 = 2TP

(2TP+FP+FN) , where TP, FP, FN are the number of true posi-
tives, false positives and false negatives for anomalous segments, respectively.
Predicted momentary values (i.e., norms of the gross-but-group-sparse additive
error term: kS.,tk2, t = 1, . . . , T ) were thresholded into momentary binary labels
with respect to 0.01. Note that these labels have many spikes and gaps between
them, thus a morphological closing operator was used to fill-in such gaps up to
1 s length during post-processing, resulting in the segmented labels of the F1

calculations. A baseline algorithm using internal torque information—not avail-
able for our methods—together with some di↵erencing heuristics and parameter
optimisation was also added for a rough orientation about performance.

3.2 Data Set

We used 300 trials of 7-dimensional joint configurations of one arm of a Bax-
ter research robot4 as our data set. The configuration was characterised by 2
shoulder, 2 elbow and 3 wrist angles. The transitions between prescribed con-
figurations were realised as an approximately piecewise linear time series with
common change points (due to some minor irregularities of the position con-
troller). Anomalies were generated by manual intrusion into the process: an as-
sistant for the experiment kept hitting the robot arm when asked, as depicted in
Fig. 1. The controller reverted back to the original trajectory as soon as possible.
Timestamps of 822 collision commands were logged and served as ground-truth
labels for the anomalies. The actual impacts were delayed by up to 5 s in the data
because of human reaction time. We took this uncertain delay into consideration

4
http://www.rethinkrobotics.com/baxter-research-robot/
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when computing the F1 performance metric: we tried to pair detected anomalous
segments with the timestamps provided with respect to the 5 s threshold. The
data were recorded at 800Hz frequency and interpolated uniformly to 50Hz.

Fig. 1. Frame series of the operator hitting the robot arm.

4 Results

Parameter dependencies with respect to the mean F1 score for the `1,2, `1,2 (10)
and the `1, `1 (12) methods are shown in Fig. 2 (a) and (b), respectively. The best

(a) (b) (c)

Fig. 2. Mean F1 scores with di↵erent (�, µ) parameters for (a): `1,2, `1,2 (10), (b): `1, `1
(12) algorithms. (c): Best achieved mean F1 scores including baseline heuristics.

parameter combination for both schemes was (�, µ) = (2�1, 2�6). With these
settings, the former algorithm achieved 709 true positive, 94 false positive and
113 false negative anomalous segments. Figure 2 (c) includes the best achieved
mean F1 scores for all approaches, including the heuristic baseline procedure.

An example highlights prediction scenarios for the `1,2, `1,2 method in Fig. 3:
(a) shows the approximately piecewise linear input time series, with markers
indicating common change points on each curve, as well as 5 anomalies pointed
out by red rectangles; (b) shows the output gross-but-group-sparse norm values
of our procedure, the 0.01 threshold level and the logged green ground-truth
anomaly labels; while (c) provides close-up views of the actual and predicted
anomalous segments. Anomalies 3 to 5 (around time points 700, 1160 and 1440)
are true positives, as they are paired with ground-truth labels and are above the
threshold. Anomaly 2 (around 420) is marked false negative, as it is improperly
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thresholded (there are 71 examples for this in the entire data set). Anomaly 1
(around 80) is stigmatised false positive, as it lacks the ground-truth label, while
an anomaly is certainly present in the segment due to controller imprecision (the
total number of such cases is 17). Mean F1 scores would be somewhat higher
with more sophisticated thresholding and controller policies.

(a)

(b)

(c)

Fig. 3. Prediction scenarios for the `1,2, `1,2 method. (a): Input time series of joint
angles. W: wrist, E: elbow, S: shoulder; Red rectangles: anomalies. (b): Blue (red): es-
timated change points (anomalies); red dashed line: optimal threshold level; green dots:
ground-truth anomaly labels. (c): Close-ups for actual and detected (red) anomalous
segments: Anomaly 1/2: false positive/negative, 3/4/5: true positives.
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5 Conclusion

We showed that sparse methods can find anomalous disturbances a↵ecting a
dynamical system characterised by stochastic switches within a parametrised
family of behaviours. We presented a novel method capable of locating anoma-
lous events without supervisory information. The problem was formulated as a
convex optimisation task. The performance of the algorithm was evaluated in a
robotic arm experiment. Although the introduced anomalies were similar to the
switching between behaviours, the procedure could still identify the disturbances
with high F1 values, outperforming two baseline approaches.

The piecewise polynomial approximation may be generalised further to more
complex, e.g., autoregressive behavioural families and may be extended with
more advanced post-processing techniques.

Our approach is motivated by the following: anomalies are sparse and in turn,
sparsity based methods are natural choices for the discovery of not yet modelled
events or processes; and that the early discovery of anomalous behaviour is of
high importance in complex engineered systems.
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