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Abstract. To approach robustness and optimal performance, biological musculo-
skeletal systems can adapt their impedance while interacting with their environment.
This property has motivated modern robotic designs including variable-impedance
actuators and control methods, based on the capability to vary visco-elastic proper-
ties actively or passively. Even though variable-impedance actuation and impedance
control in robotics is resolved to a great part, a general set of rules by which
impedance is adjusted related to the task at hand is still lacking. This paper aims
to fill this gap by providing a method to estimate the stiffness of the human arm in
more than two degrees of freedom by perturbation. To overcome ill-conditionedness
of the impedance and inertial matrices, we propose and validate methods to sep-
arately identify inertial and stiffness parameters. Finally, a model is proposed to
estimate the joint stiffness from EMG-measurements of muscle activities.

1 Motivation, Problem Statement, Related Work

Dynamic interaction with the environment means handling impacts and unknown
contact forces. Therefore compliant systems are active topics of research in the
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field of robotics. Surpassing traditional rigid robots, the control loops of modern
robotic systems are extended with additional impedance parameters, viz. stiffness
and damping.

Even though the implementation of impedance control in robotics is resolved to
a large part, one important issue still needs to be addressed: how are the impedance
parameters set to optimally perform a task? Traditionally, robotic tasks are only de-
fined in target end-effector positions or, in some cases, end-effector trajectories; but
the impedance around these positions or trajectories remains a matter of common
sense, at best. For instance, when performing a peg-in-hole task, high stiffness in the
perpendicular and low stiffness in the lateral directions, so as to allow for imprecise
positioning while solving the task, appears to be useful. But how do we find general
rules-of-thumb for setting these extra parameters?

Beside heuristic methods tuning the impedance parameters, mimicking the be-
havior of the human arm is an auspicious field of research, and leads to what we
call biologically-inspired robotics. By measuring and subsequently analyzing hu-
man arm impedance parameters, we can attempt to extract general rules and project
these to the robotic domain.

The human arm’s capability to alter its impedance has motivated multiple de-
velopments of robotic manipulators and control methods. It provides advantageous
during manipulation such as robustness against external disturbances and task adapt-
ability. However, how the impedance of the arm is set depends on the manipulation
situation; a general procedure is lacking.

The only direct method to measure stiffness in a functioning feedback system
is to apply external force perturbations to the limb and to measure the resulting
displacements; such measurements have only been satisfactorily realized in planar
(2D) movements [8, 12, 4, 5, 10, 2, 11]. To date, no fully satisfactory methods exist
to investigate the time-varying impedance during movements. Early efforts were
subject to error because they assume that subjects perform the same movement on
repeated trials and they ignore the non-linear inertial properties of the musculo-
skeletal system.

We provide a method to identify human arm impedance in more than 2 degrees
of freedom. We do this by initially identifying the kinematic and inertial parame-
ters of the arm through movement. Subsequently we identify stiffness parameters of
the human arm in 5 degrees of freedom (shoulder, elbow, and lower arm rotation),
while taking the numerical stability of the data into account. The data are related to a
representation of the stiffness by electromyography (EMG) signals which, in combi-
nation with the kinematics, gives us a 3D Cartesian identification of the impedance
parameters of the human arm.

2 Technical Approach

An adequate model describing the human limb dynamics can be separated in two
power interconnected subsystems: the mass inverse dynamics of the skeleton (in-
cluding the mass distribution of the muscles)
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Γ(q, q̇, q̈, ξ) = τ + τext , (1)

where q ∈ Rn are joint positions, ξ ∈ R≤10n are base inertial parameters and τext are
external torques and general impedance functions of the muscular system, acting as
force elements on the joints:

τ = −h(q, q̇, a) . (2)

We assume h : q, q̇, a→ τ to be continuous, while the muscle activities a are motor
commands, which are able to shift the equilibrium point of the impedance. Thus,
linearization in the working point xd ! (q(t = 0), q̇(t = 0), a(t = 0)) yields:
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τd
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ã + . . . . (3)

Additionally, we assume that activations a = const. (this can be fulfilled by certain
experimental conditions); consequently the joint torques acting due to muscles can
be approximated by:

τ = −τd − Kq q̃ − Dq ˙̃q , (4)

where q̃ = q − qd is the tracking error, τd are equilibrium torques and Kq, Dq are
joint stiffness and damping matrices, respectively.

Identifying the complete parameter set (i.e., ξ, Kq and Dq) from measurements
of τext would lead to an ill-conditioned least-squares problem [7], thus we estimate
ξ separately by projecting the inertial forces to the subject’s mounting base where
they can be measured with a force / torque sensor, i.e.,

χ0(q, q̇, q̈, ξ) = χsensor . (5)

Once the inertial parameters ξ are known, the not directly measurable joint torques τ
can be estimated via the inverse dynamic model and the identification model reduces
to

Kq q̃ + Dq ˙̃q = τext − Γ(q, q̇, q̈, ξ) − τd , (6)

where only the left hand side is unknown. This separation allows severed identifi-
cation of parameters for each subsystem—to overcome the problem of badly scaled
least-squares estimations [7].

The complete 5-DoF identification procedure requires the following steps:

1. Identification of center of rotation for the 3-DoF shoulder joint and 2-DoF elbow
joint, respectively;

2. Solving inverse kinematics, which gives an approximation of the Jacobian
matrix;

3. Estimating the inertial parameters via kinematics data and base force / torque
sensing;

4. Separated identification of the impedance parameters while EMG signals of the
active muscles are recorded;

5. Train a model in order to predict stiffness from EMG data which finally gives the
possibility to estimate stiffness without mechanical measurements.
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2.1 Kinematic Identification

To identify the positions of the human limb joints, a method proposed by [1] is
conducted. We assume that at least two axes of rotation intersect. The absolute posi-
tion r of the point of intersection can be represented via markers placed at the joint
adjacent body segments, i.e.

r1 = p1 + RT
1 d1 , (7)

r2 = p2 + RT
2 d2 , (8)

where pi and Ri denotes the absolute position and orientation of a marker and di

is the distance of the intersection point w.r.t. the ith marker. Thus minimizing the
integral error

S =
1
T

∫ T

0
(r1 − r2)T (r1 − r2) dt , (9)

determines the unknown d1 and d2.

2.2 Inverse Kinematics

The kinematics of the human limb consists of uncertainties, e.g., non-ideal joints and
varying segment lengths. In order to minimize these errors we propose a numerical
solution of the inverse kinematics, i.e.

arg min ∥T(q)T−1
d − I∥F , (10)

where T(q) and Td are the parameterized and desired homogeneous transformation
matrix to the wrist, respectively and ∥.∥F denotes the Frobenius matrix norm. This
optimization problem is continuous and unconstrained and can be solved with, e.g.,
a quasi-Newton method.

2.3 Inertial Parameter Model

For the identification of the inertial parameters, a model can be considered where
the dynamical forces / torques are projected to a coordinate system at the sub-
ject’s mounting base, i.e., under the seat (a similar approach was proposed by [13]).
The equations of this model can be obtained analytically by means of the iterative
Newton-Euler formalism:

χi =

[
f i
ni

]
=

[
Fi(q, q̇, q̈, ξ) + Ri,i+1(q) f i+1

Ni(q, q̇, q̈, ξ) + Ri,i+1(q)ni+1 + p̃i,i+1(q)
(
Ri,i+1(q) f i+1

)
]
,

for i = nbody, nbody − 1, . . . , 0 , (11)

where χi is the wrench acting on the ith body. Ri,i+1 and pi,i+1 are the relative rotation
and distance between body i and i + 1, respectively. Furthermore, f i+1 and ni+1 are
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Cartesian forces and torques propagated from the (i + 1)st body. Finally, Fi and Ni

are the forces and torques due to the inertial dynamics. They can be computed by:

Fi = miv̇i + ˙̃ωiSi + ω̃i
(
ω̃iSi
)
, (12)

Ni = Θiω̇i + ω̃i (Θiωi) + S̃iv̇i . (13)

Herein ω̃ ∈ R3×3 denotes the skew symmetric tensor composed of components
ω ∈ R3. vi, ωi and v̇i, ω̇i are absolute translational and angular velocities and ac-
celerations of the ith body. The inertial parameters mi ∈ R, Si ∈ R3, and Θi ∈ R3×3

(i.e., mass moments zeroth, first, and second order) are linear in the base base pro-
jected model χ0(q, q̇, q̈, ξ) = χsensor and can be identified by common least-squares
estimations.

2.4 Impedance Identification

Due to the constraint of energy conservation the force field generated by mechanical
stiffness must be integrable [6], i.e., stiffness matrices are symmetric and positive
definite (SPD). In order to enhance the robustness of the identification procedure we
also determine the stiffness separated from damping. Therefore we take the reduced
model

Kq q̃ = τext − Γ(q, ξred) − τd , (14)

into account. This model is valid for the stationary case q̈ = q̇ ≈ 0. In that case the
stiffness balance the (non-linear) gravity and external torques.

The identification model is linear in Kq and consists of the form

AX = B , (15)

where A = q̃T , X = KT
q and B = (τext − Γ(q, ξred) − τd)T . To ensure the SPD

constraint the area criterion proposed by [3]:

f (Y) =
∥∥∥AY − BY−T

∥∥∥ , (16)

where X = YYT , will be minimized. When P = AT A and Q = BT B the unique
solution is given by

K̂q = X̂ = UPΣ
−1
P UQ̃ΣQ̃UT

Q̃Σ
−1
P UP , (17)

where

P = UPΣ
2
PUT

P , (18)

Q̃ = ΣPUT
PQUPΣP = UQ̃Σ

2
Q̃UT

Q̃ , (19)

are the Schur decompositions of P and Q̃, respectively.



94 D. Lakatos et al.

2.5 Stiffness Determination from EMG

To predict a stiffness matrix Zi from EMG data xi, a nonlinear two-layer model was
used. As Zi is symmetric and positive definite, we note that it can be decomposed
into Zi = LiLT

i via the Cholesky decomposition.
Constraining the output of our model to be positive definite and symmetric can

thus be done by not modeling Zi, but Li instead.
In more detail, given N time windows {xi} ⊂ Rn×m where n is the length of the

time windows and m is the number of EMG electrodes, we predict the components
of the Cholesky decomposition via

li =
1
N

W1σ (W2φ(xi) + b2) + b1 , (20)

where φ is a function that extracts features from each time window andσ is a nonlin-
ear function applied component-wise. We then turn li into a lower-triangular matrix
Li by rearranging the components from vector into matrix form. The final prediction
is subsequently formed by Yi = LiLT

i .
The parameters of the model θ = {W1,W2, b2, b1} are either matrices W1 and W2

or vectors b1 and b2. To learn such model, we assume that the measurements of the
stiffness matrices {Zi} are subject to Gaussian noise and minimize the negative log
likelihood:

log λ "
∑

i

∥Yi − Zi∥2 . (21)

The resulting optimization problem is unconstrained and continuous. The gradients
are efficiently computed via dynamic programming and the chain rule. Thus, stan-
dard off-the-shelf optimizers are used to find good solutions for θ.

3 Experiments

During the whole experiment subjects were seated on a special chair depicted in
Figure 1(a) while the upper body was restrained by a seat belt. At the wrist a plastic
cuff supported the connection to the robot’s end-effector. JR3 force / torque sensors
were placed at the interconnection (between robot and limb) and at the subject’s
mounting base (under the seat). The data of both force / torque sensors were sam-
pled at 2 kHz. To estimate the kinematic configuration optical tracking markers were
placed at the upper body, upper arm and forearm, respectively. We used data from
Vicon T10 cameras to track the markers position and orientation, sampled at 500 Hz.
To map EMG to stiffness, we recorded EMG signals from eight sources on the arm
(see Fig. 1(b)). We used Delsys Trigno wireless electrodes, sampled at 2 kHz. Ex-
perimental instructions and visual feedback were given to the subject via a display.

At the beginning of an experimental session, data from the optical tracking sys-
tem was recorded to identify the subject’s individual joint positions and compute
the arm kinematics. Here the subject was instructed to move all joint axes of the
limb randomly. After this, data (40 trials) for the inertial parameters were gathered,
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while different predefined kinematic limb configurations had to be reached in free
movement. These initial recordings where followed by the final stiffness identifica-
tion procedure in which subjects had to fulfill a force task. The subject’s wrist was
coupled to the light-weight robot’s end-effector and desired and actual interaction
forces / torques were displayed. After holding a certain force / torque level (4 levels
in Cartesian X and Z direction each) for a random duration between 1.5 and 2.5
seconds, the robot perturbs the limb in one direction randomly chosen from the 10
possibilities (two for each joint DoF). All smooth (polynomial fifth order) displace-
ments were planned in joint coordinates of the human limb with an amplitude of
≈ 0.08 rad via the Jacobian matrix, i.e., ∆xrobot = J limb(q)∆q. Typical disturbances
are shown in Figure 2.

(a) (b)

Fig. 1 a Experimental setup: (1) DLR light-weight robot applies disturbances to the human
arm, (2) JR3 force / torque sensor measures interaction forces, (3) JR3 force / torque sensor
measures subject’s mounting base forces, (4) Vicon T10 optical tracking system, (5) Sub-
ject’s visual feedback. b EMG electrode placement for estimating stiffness from EMG. A
total number of 8 electrodes are placed. EMG signals of dominant muscles involved in shoul-
der and elbow joint movements are gathered: brachioradialis (BRAD), biceps long (BILH),
deltoid clavicular (DELC), pectoralis major clavicular (PMJC), deltoid scapular (DELS), tri-
ceps long (TRIO), triceps lateral (TRIA), and triceps medial (TRIM).

4 Results

4.1 Estimated Stiffness and Prediction via EMG

After estimating the joint positions, the inverse kinematics of all trials (i.e., inertial
and stiffness measurements) were computed. First identification results are obtained
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from stationary parts of the recorded data, i.e., where the velocity is lower than a
certain threshold. Therefore the inertial identification model reduces to

χ0(q, ξred) = χsensor (22)

where ξred contains the mass moments zeroth and first order. To estimate ξred, mean
values of the joint angles q (where q̇ ≈ 0) and mean values of associated base
wrench componentsχsensor,i where i = 3, 4, 5 were used for least-squares regression.

The stiffness identification procedure was also based on the reduced model where
qd and τd was obtained by taking the mean values in the time interval before the on-
set of the disturbance. Analogously, a second interval for q and τ was chosen after
the displacement. For descriptive reasons, typical estimated joint stiffness matrices
are transformed to Cartesian coordinates and visualised as stiffness ellipsoids in Fig-
ure 3. Each stiffness matrix Kq was determined from 50 disturbance measurements;
consequently each map was constructed from 50 sets of 8 × 400 data points. We
preprocessed the EMG data with a full wave rectification and split the data into time
windows of length 70 afterwards. For φ we picked the maximum along each of the
signals followed by two layers of unsupervised feature extraction using the approach
of [9]. We chose 100 soft rectified linear units as the nonlinearity in our model:
σ(x) = ln(1 + exp x). All hyper parameters of the learning process were selected by
random search and picking those which performed best on a held out validation set.
The average normalized root mean squared error for the multi-layered model was
0.3378. In contrast, a linear model never achieved 0.39 or better. For an example of
the predicted stiffness matrices, see Figure 4.
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Fig. 2 Typical disturbances exerted by the light-weight robot, mapped to human arm’s joint
space. To demonstrate the repeatability the data is aligned along the time axis.
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4.2 Comments

Estimating joint stiffness in more than two degrees entails a chain of model as-
sumptions, while model uncertainties accumulate from kinematics over inertial to
stiffness identification. The identification of inertial parameters depend on measured
joint angles q (and their derivatives) and are based on force / torque data measured
on the mounting base, i.e., the measurement range must include human’s whole
body mass. These are affected by the following assumptions:

• For human arm’s kinematics it is assumed that the shoulder joint is an ideal spher-
ical joint and the elbow joint consist of two orthogonal, intersecting axes. Fur-
thermore, it is assumed that optical markers placed on the upper and lower arm
do not move relative to the skeleton. Both issues, extensively studied in [1], lead
to biased estimates of joint angles q and their time derivatives.

Fig. 3 Cartesian stiffness
ellipsoids of estimated joint
stiffness matrices. Each el-
lipsoid represents the force-
field generated due to spher-
ical displacements (here, the
radius r = 5 mm). The el-
lipsoid’s origins are shifted
to the point of pretension
forces F = (FX , FY , FZ)T .
Additionally, the principle
axes (eigenvalues) of stiff-
ness ellipsoids are displayed
as straight lines.
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Fig. 4 Hinton diagrams of the stiffness matrices based on EMG prediction (left), estimation
from force perturbations (middle) and the absolute value of their difference (right). Black
boxes correspond to negative, white to positive values while the size represents the magni-
tude. Data was taken from the testing set.
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• In particular for some small mass moments of inertia, the reaction force at the
mounting base undercuts the sensitivity of the force / torque sensor.

• For the stiffness identification we assume that muscle activation a are constant.
This implies fast perturbations, where displacements are stabilized in a short time
(cf. [7]). Otherwise a change in activations would have changed the impedance.

This chain of assumptions forces us to analyze the results depicted in Fig. 3 inten-
sively. For instance, from planar measurements it is known [5] that stiffness ellipses
align their major axis in the direction of the pretension force applied. For the present
estimations this effect can be observed only in the direction of FZ .

5 Main Experimental Insights

In this work we have introduced a new and unique method to measure the stiffness
of the human arm in 5-DoF joint space, viz. 3 shoulder DoF, the elbow flexion, and
the lower arm rotation. Identification of arm kinematics and deriving the Jacobian
matrix allows for transferring the measured joints stiffnesses to the Cartesian do-
main. We thus pioneered the measurement of human arm impedance in more than 2
Cartesian coordinates.

Furthermore, we have proposed and incorporated a multi-layered regression
model which maps surface EMG signals to joint stiffness. With this method, com-
bined with a detailed kinematic model, we can accurately estimate arm impedance
without the need of mechanical perturbations. This is essential in order to determine
human arm impedance not only in static positions but also along a trajectory during
task execution, without the need of perturbation measurements.

Given this framework we are now able to investigate how humans modulates arm
impedance in any task. The resulting measurements can be used to derive methods
of impedance modulation for robotic arms.
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