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Measuring Fingertip Forces from Camera Images for Random Finger
Poses
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Abstract— Robust fingertip force detection from fingernail
image is a critical strategy that can be applied in many areas.
However, prior research fixed many variables that influence
the finger color change. This paper analyzes the effect of the
finger joint on the force detection in order to deal with the
constrained finger position setting. A force estimator method
is designed: a model to predict the fingertip force from finger
joints measured from 2D cameras and 3 rectangular markers
in cooperation with the fingernail images are trained. Then the
error caused by the color changes of the joint bending can
be avoided. This strategy is a significant step forward from a
finger force estimator that requires tedious finger joint setting.

The approach is evaluated experimentally. The result shows
that it increases the accuracy over 10% for the force in
conditions of the finger joint free movement. The estimator is
used to demonstrate lifting and replacing objects with various
weights.

I. INTRODUCTION

When studying the use of the human hand in grasping
and manipulation [1], [2], one of the most important aspects
is how the fingers control the force between the fingers
and the handled objects. These force vectors between the
fingers and the surfaces of the object describe how we
interact with it, more even than the positions of the fingers
themselves. Furthermore, it is these force vectors that are
being accurately controlled by our neural system to optimize
for grip stability and minimum intervention.

At the same time, measuring these forces is prohibitively
difficult. Force sensors at the fingers destroy the “natural”
feel and interaction, falsifying experimental data. Instru-
menting objects is the obvious alternative, but leads to
restricted experiments with only few objects, and restricted
to predefined positions on the object.

Picking up on and extending the seminal work by Mascaro
et al. (see, e.g., [3], [4]), we use a steady color camera to
observe the nails of the fingers while in contact with an object
(Fig. 1), and learn the relationship between nail coloration
and force vector using convolutional neural networks (cNN)
and Gaussian processes (GP). We have investigated these in
two previous publications [5], [6].

Moving away from a constrained lab setting (e.g., finger
brace [7]) with perfect conditions and comfortable restric-
tions, we focus on an additional constraint that strongly
influences measurement results in this paper: the bending
of the finger. It is easy to verify that, when you bend your
finger, the color below the nail changes. The reason for this
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Fig. 1: Estimation of the finger force and torque from visual
videos.

is that the extensor tendon is connected to bone underneath
the nail and the tissue between nail and bone; stress there
will also pull the surrounding tissue, and change the blood
flow underneath the nail.

Our previous results ignored this effect, as our test settings
kept the finger in approximately the same position all the
time. In [8], [9] this issue is recognized and methods are
proposed to estimate the angles of the finger joints from color
changes. In this work, we are taking a different approach:
using the (optically measured) angles of the finger joints,
we use this as extra parameter for our estimator, leading to
much improved accuracies when predicting the finger-exerted
force from the nail image.

II. SETUP

A. Experimental Apparatus

The recording setup consists of two stationary cameras
and a force/torque sensor (see Fig. 2). The video data is
captured by the IMAGINGSOURCE camera and ALLIED
camera at 15 fps with resolutions of 1024 x 768 pixels and
640 x 480 pixels respectively. The fingernail and markers
of the distal interphalangeal joint video is recorded by the
IMAGINGSOURCE camera. To ensure that the markers on
the back of the finger are detected for different finger joint
angles, ALLIED camera is employed to record the markers of
the proximal interphalangeal joint. In addition, the ATI Nano-
17 six-axis force/torque sensor under the finger measures
the true forces and torques of the fingertip contact point
at 100Hz. As the contact surface, a flat pad of sand paper
is mounted on the sensor. We synchronize the visual and
force/torque data based on time stamps. Diffuse lighting is
from a white lamp. The feedback of force in the pressing
direction and images are plotted on the monitor.
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Fig. 2: Experimental apparatus. The IMAGINGSOURCE
camera acquires videos of the fingertip which has contact
force and toques on the ATI force/torque sensor surface. The
ALLIED camera assists in finger joint angle detection.

B. Non-rigid Image Alignment

The finger orientation and location vary in the visual
data. The fingernail and the surrounding skin are isolated
from the finger using a color tape. After segmenting the
position of the finger in the image, we continue by aligning
each image to a previously recorded reference finger image;
this considerably reduces subsequent processing errors. We
previously demonstrated this alignment with convolutional
neural networks [6] but demonstrate a different method here
which has a high quality of alignment.

Nonrigid image alignment is a method that is able to
locally deform the target image to fit the reference image.
It plays an important role in computer vision and is widely
used for a variety of applications (e.g., medical imaging and
face recognition).

This method works as follows. Given a reference image I,
an image J is to be aligned using non-rigid image alignment
method [10]. We assume the two images have the following
intensity relationship:

I=Jr+v+z (D

where v is an intensity correction field and z ~ A(0, 0?) is
zero-mean Gaussian noise. 7' is the geometric transformation
that registers J onto I. Estimation of v and T is to minimize
the objective function

E(T,v) = DI, J,;v) +w||Pv|? 2)

We use the sum-of-squared differences (SSD) to measure
the similarity of I and J, which is given by

D, J,;v) = Z[I(xi) —J(xi+vE))] B

|Pv||? is a regularization term that penalizes some properties
of v. For instance, it penalizes the unsmoothness if P is a

derivative operator. The scalar w therefore parameterizes the
trade-off between the data fitness and regularization.

We model the transformation 7" using the free-form defor-
mation (FFD) transformation with three hierarchical levels
of B-spline control points. We update the transformation
parameters via gradient descent optimization.

If images are separated into RGB channels, the fingers
have a high contrast between white and red areas in the
green channel, which benefits the next step of force predic-
tion. However, the high-contrast channel creates redundant
and unnecessary features, which cause misalignment during
image registration, while red and blue channels are quite
stable for various contact forces. Thus, the alignment trans-
formation are generated using the blue channel of the image,
and consequently, the green channel of the image is used
to generate the aligned images through the transformation.
Fig. 3 shows the alignment.

Fig. 3: Image alignment. The columns from left to right are
the reference image, the images before alignment, the aligned
images and the mesh transformation. The finger images are
in the green channel. The more deformation of the image
(row 2, column 2) has before alignment, the more mesh
transformation (row 2, column 4) it is.

C. Finger Joint Estimation

Rotations in the metacarpophalangeal joint (MP, see
Fig. 4) have no significant effect to the fingernail color, while
rotations in the distal interphalangeal (DIP) and proximal
interphalangeal (PIP) joints are relevant to the color [8]—
basically, bending the finger stretches the extensor tendon
and thus influences the nail bed. Thus, we focus on DIP and
PIP joint angle measurements.

First of all, a rectangle marker is designed, such that
the pose (position and orientation) of the rectangle can be
detected by a 2D camera using HALCON (MVTec). The
four line segments of the rectangle boarder are detected
and the corresponding intersections are taken as corners
of the rectangle. Knowing the internal camera parameters,
the rectangle size in space and the detected corners, the
rectangle pose in the camera space is initially estimated.
After that, a non-linear optimization approach updates the
final pose through minimization of the cost function, which
is the geometrical distance between the detected boarders and
the back projection of the space rectangle onto the image.
Basically, we can compute where the rectangle is in space.

Given the coordinate of a rectangle marker, the difference
in the positions of two markers can estimate a single finger



joint; we use 3 markers to estimate both DIP and PIP joint
angles. For simplicity, Fig. 5 only shows PIP estimation,
while DIP estimation employs the same method but with
markers on distal phalanx (DP) and middle phalanx (MP).
The marker sizes on MP and proximal phalanx (PP) are
1.5cm x 2.25cm and on DP is 1 cm x 1.5cm. The markers
on MP and PP are A and B respectively, while C is the
camera coordinate.

distal

interphalangeal distal
phalanx
proximal middle
interphalangeal phalanx
proximal
metacarpo- phalanx
phalangeal

Fig. 4: Finger joint names.

AP = §RGRPP = {RERT PP, €

where 2P = [0,0,1]7 is a unit vector on the z direction
w.r.t. the B-coordinate.

The angle of the joint is equal to angle of the 2 vectors
in the z directions of the two markers.

Oprp = atan2(||“P x PP||,“P - BP). (5)

The coordinates of the fingers are not strictly to be parallel
in the initial positions, since we set the angle of the joint to
zero in the initial position. The initial position can be at any
joint angle. By default, we set the initial position when the
finger is straight.

Fig. 5: Joint estimation. The left figure is the initial position
of PIP. The right figure is the 38.9 degree of PIP.

III. FORCE/TORQUE PREDICTOR

The fingernail and surrounding skin color distribution and
deformation and PIP/DIP joints reflect the the changes of
contact force. The force/torque predictor is to construct
the mappings from the finger images and joint angles to
the fingertip contact force/torque. Our method is based on
Gaussian process regression to create the mappings.

One third of the consecutive data set in time is used as a
test data set. The rest of the data is for training.

A. Gaussian Process Regression

A Gaussian Process (GP) [11] is one of the most widely
used methods of a stochastic process. One of the essential
properties is that GP is completely defined by its mean m(x)
and covariance k(x,x’) function,

m(x) = E[f(x)), (©)
B(xx) = B|(f(x) = m(x)) (/) = m(x))|. D

In a simple case without loss of generality, we assume
the GP has a zero mean function. The squared exponential
covariance (SE) is derived as

1
k(x,x') = a? exp(—ﬁﬂx—x’ﬂg), (8)

where the signal variance a]% and length-scale [ are the
hyper parameters. It is a smooth function and measures the
closeness or similarity of the inputs. A basic assumption of
GPs is that the target values are similar with the inputs which
are close. Accordingly, the training inputs which are close
to a test input have a similar target of that test input.

As the inputs of training points, (x1,X2,...,XN) are
aligned images and reshaped to 1D vectors. Additionally,
the associated targets are the detected forces and torques
y := (Y1,%2,...,yn)T by the force/torque sensor. Based on
a training set {(x;,y;),7 = 1,2,..., N}, we can obtain the
predictive mean and variance of the function values f* at
test locations of the datapoints x*,

E[f]=k"(K +o71)"y, ©)
Var[f*] = k(x*,x*) — K*T(K + 021)7'k*, (10)

where K;; = k(xi,x;j), kf = k(x;,x*), hyper parameter o2
is the noise variance, and [ is denoted to identity matrix.

The optimal values for the hyper parameters {a]%, l,0%}
can be evaluated from the training set by maximizing the log
likelihood function

1 _
logp(y|X) = — Jy" (K +o31)""y

— 110g’.K’—|—U,211'| — glog%r.

; an

B. Combined Kernel

The kernels with data coming from multiple inputs (differ-
ent feature representations from subsets) can be combined.
Many approaches can be chosen to combine them based
on the data properties and applications. For multi-inputs
of fingernail images Xi, and finger joint angles X;j,, we
construct a kernel by the product of two kernels:

k}c(xa X/) =kim (Ximv X;m)kja(xja’ X;a)

1
—o2,0% exp(— 5 i — X 3
1
— sl = xa113). (12)
ja

where ki, and k;j, are squared exponential kernel for finger
nail images and finger joint angles, respectively. The com-
bined kernel is basically a squared exponential kernel with
one length scale per modality.



The linear normalization is performed separately into the
range of [0, 1] for the two sources of the inputs.

C. FITC Approximation

Compared with the GP methods used in [5], the data set
increases to several thousands of images and joint angles.
A critical issue with GP methods is the requirement of
large computation which increases as O(N?) for training,
where N is the number of training samples, and O(N?) per
test case. A variety of methods have been implemented to
improve GPs in order to handle massive data. We choose a
widely used method, fully independent training conditional
approximation (FITC) (in [12] as the sparse pseudo-input
GP), to accelerate the training and testing cost to O(NM?)
and O(M?). The size of an inducing inputs M is much less
than N. Inducing points are a small amount of inputs that
summarize a large number of inputs.

To handle the large data set cases, FITC is a method that
a low rank term with diagonal approximation to the exact
covariance. Cross-covariance are only computed between
training and inducing points as well as between test and
inducing points.

We randomly select a subset of the training data as the in-
ducing points: X = {X1, X2, ..., X,, }. u is the corresponding
latent values of X. A more efficient likelihood approximation
is given by

p(ylf) =~ q(y|un) (13)
= N(KsuK, u,diag[Kpp — Q.5+ 00y 1)),

where f = {f,,}N_, are latent values based on x,, € X,
the covariance function Ky ; is the Gram matrix all pairs
(x4,%;), diag[*] is a diagonal matrix of *, and Qs r = Ky .

IV. EXPERIMENTS AND RESULTS

To evaluate the implementation of the proposed ap-
proaches, experiments for the influence of joint angle and
force/torque predictor are carried out. Then we will apply
our methodology to measuring the forces while lifting cups
with different weights.

A. Force/Torque Prediction Result

There are 5 subjects denoted by {S,}7. One finger of each
subject is measured, and the subject can choose any finger.
The data of the subjects are trained separately using GP and
FITC-GP. The estimation is user-independently.

Without contact between the finger and the environment,
DIP and PIP are dependent; in contrast, these two joints can
move independently if the fingertip has a contact force [8].
In our experiments, we do not consider all permutations and
combinations of the two joint angles, while the two joints are
increased/decreased with the natural gestures as the finger
grips objects. Additionally, as long as PIP joint degree is
larger than the degree when the finger in the case of natural
relaxation (6,), the joint degree does not influence the nail
color change. Accordingly, PIP joint range is [0, 6,] in our
experiments, while other conditions can be considered as PIP
at 0,.

The subjects start from about PIP at 50 degree and DIP at
20 degree and both decrease to approximate 0 degree. For one
round, the finger presses the force/torque sensor with a circle
motion on the sensor surface, and at the same time increases
the force slowly to about 10 NV in z direction then decreases
to 0. The finger is always in contact with the force/torque
sensor during measurements, and the contact point is fixed.
For one subject, there are 18 rounds which include 6 joint
poses, about 9,000 frames and about 3,600 pixels per frame.
One third of the training data are randomly selected as the
inducing points for FITC.

We have the following data sets: i) data set 1, the training
with the finger joint at a certain degree; ii) data set 2, the
training data with the various finger joint poses; 3) data set
3, the test data with the various finger joint poses.

The results of force/torque predictor are shown in Table I
(data set 2). Both of the two methods achieve high accuracy.
The accuracy of FITC-GP is lower than that of GP by no
more than 1% in average, but FITC-GP is considerably faster
than GP. FITC-GP model is not trained using data set 1,
since the result of data set 1 has low accuracy; therefore, it is
meaningless to consume even more accuracy for reducing the
training time. Fig. 6(a) shows an example of force and torque
prediction. The figure plots only partial data for S5, and
other subjects have similar plots. The figures illustrate that
the prediction matches the truth quite well and the confidence
interval area is small. The R-squared accuracy (V/R?) is used
to evaluate the results in quantity.

If the joint angles are relevant to the force prediction, the
corresponding hyperparameters would be large. Take S; for
instance, the combined kernel of f, is {l;, = 0.018,0,, =
0.018, l;;, = 0.864, 04, = —0.186}. Compared with about
3,600 pixels, the two joints have relative large hyperparam-
eter values. There is an effect of the joint angle to the
force prediction. In contrast, if we randomly choose any
two pixels to replace the joints, the hyperparameters are
{0.0072,0.0072, l;,,, = 0.777,04, = —0.185}, where the
first two values are [ and o of the two pixels. The two pixels
have less effect to the predictor.

B. Influence of Angle Joints

Without taking the joint angle into account, the predictor
may have a large error or cannot recognize the input and the
result has a large confidence interval. We record two types of
training data for comparison, and evaluate the effect though
the same test data set. One training data set is with DIP
and PIP at a certain angle and different forces. The second
one contains more information with different DIP and PIP
joint angles, which is described in Section IV-A. As shown
in Table I, our approach strongly enhances the accuracy of
the force over 10%, compared with the method ignoring the
effects of various finger joints.

As an example, the comparison of our method with no
joint variable in training data for S5 is shown in Fig. 6.
Specifically, the PIP angle of the test data is in the range
of [0,40]. The PIP joint of the training data is at 35 degree
approximately for Fig. 6(b). With the difference of the joint



TABLE I: Accuracy (v R?) of Force Estimation by Gaussian process and FITC Gaussian process. ¢ is the training time. The

measurements use the same test data set (data set 3) with different training data sets (data set 1 and data set 2).

[T3EL]

means

that GP cannot predict (the accuracy is negative). f and 7 are force and torque respectively.

GP (data set 2) FITC GP (data set 2) GP (data set 1)
T y z t/min T y z t/min T y z
s f 0952 0.959 0.966 50.7 0.949  0.958 0.963 34.0 0.728 0.823  0.863
! T 0951 0966 0.956 . 0.951 0.962 0.955 : 0.807 0.440 0.667
S f 0936 0934 0.959 49.1 0.927 0921 0.952 37.0 0.773  0.781 0.832
2 T 0920 0947 0.893 : 0911 0927 0.871 : 0.459 - 0.459
s f 0963 0958 0.952 52.8 0.959 0.954 0.951 30.0 0.892 0.747  0.760
3 7 0.803 0.851 0921 : 0.805 0.836 0.907 : 0.204 0.633 0.674
s f 0962 0961 0.961 50.7 0.963 0.961 0.957 39.7 0.891 0.801 0.659
4 7 0934 0.891 0.900 ' 0.931 0.871 0.899 : - - 0.544
s f 0954 0953 0974 315 0.954 0.954 0.972 95.7 0.891 0.874 0.852
5 T 0959 0956 0953 : 0.957 0.953 0.952 : 0.790 0.514 0.817
f 0955 0953 0.962 0.950 0.950 0.959 0.835 0.805 0.793
Avg. T 0913 0922 0925 47.0 0911 0910 0.917 33.3 0.565 0529 0.632
angle increasing, the error of the method without joint angle truth
3 prediction
|

becomes larger, while the method with the various angle
training data keeps the same. Especially, when PIP is at
Odegree, the fingernail always has a white area, and thus
the predictor cannot predict zero f, using data set 1.

C. Application

A task of lifting and replacing an object on a table is
implemented (see Fig. 7). This application can be developed
for human finger force distribution analysis for grasping
and human-robot interaction. The user grip the object using
thumb and forefinger. After every lifting and replacing, the
fingers release and keep a distance to the object. The sensor
is mounted on a container to measure the ground truth of
one finger. The weight of the container and the sensor are
36 g in total, together with the standard weights increasing
from 100g to 500g in steps of 100g. The vertical is the
sensor x direction, and the negative pressing direction is the
sensor z direction. Since horizontal direction has zero force,
we only plot f, and f,. The accuracy reaches 95.2% and
96.1% respectively.

V. CONCLUSIONS

This paper has presented a method that allows measuring
finger contact force from the fingernail images at various
finger joint angles. We compare the results of Gaussian
Processes (GP) and the computationally cheaper FITC-GP
with kernels combining images and visually measured joint
angles. We performed experiments to quantify the estimator
and present an application of lifting and replacing objects of
different weight. The results demonstrate that the accuracy
has been improved approximate 15% for forces and 30 % for
torques with the inputs of joint angles and fingernail images.
The achieved high performance enable the fingernail force
estimator to strongly reduce measurement restrictions such
as finger brace in real-world applications.
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Fig. 7: Lifting and replacing objects. The gray areas are the
95% confidence interval.

In the future, we will explore the approaches for multiple
finger force detection, and enable the estimator to work in
scenarios with more uncertainty such as different lighting
conditions. Despite these restrictions, the effect of our ap-
proach is shown to be ready for applications such as human
grasping and human-robot interaction.
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Fig. 6: Force/torque prediction for Ss. (a) shows the result of force/torque prediction using the training data set with the PIP
joint angle in [0, 50] degree and the DIP in [0, 20] degree. (b) shows the result of force/torque prediction using the training
data set with the PIP joint angle at about 35 degree. The grey areas are the 95% confidence interval. (c) and (d) are the PIP
and DIP joint angles of the test data respectively. In order to increase the readability, only 3 finger joint poses are shown.
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