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Abstract— Dynamic movement primitives (DMPs) are pow-
erful for the generalization of movements from demonstration.
However, high dimensional movements, as they are found in
robotics, make finding efficient DMP representations difficult.
Typically, they are either used in configuration or Cartesian
space, but both approaches do not generalize well. Additionally,
limiting DMPs to single demonstrations restricts their general-
ization capabilities.

In this paper, we explore a method that embeds DMPs into
the latent space of a time-dependent variational autoencoder
framework. Our method enables the representation of high-
dimensional movements in a low-dimensional latent space.
Experimental results show that our framework has excellent
generalization in the latent space, e.g., switching between move-
ments or changing goals. Also, it generates optimal movements
when reproducing the movements.

I. INTRODUCTION

The representation of movement via Dynamic Movement
Primitives (DMP) is a promising approach and is widely used
for learning by demonstration and reinforcement learning
[1]. The generalization of movements by DMP is robust to
adaptation to different speed, shift, stretch and goal posi-
tion by changing DMP parameters. A probabilistic version,
dubbed ProMP [2], has been proposed which is capable of
representing movement variance.

High-dimensional movement data increases the difficulty
of learning, inverse kinematics and redundant degrees of free-
dom representation. In earlier work Gaussian Process Latent
Variable Models (GPLVM) [3], [4] and denoising autoen-
coder [5] have been investigated for movement representation
in latent space using DMP. These approaches efficiently
reduced the data representation dimensions and enabled new
movements generated by simply changing parameters in
the latent space. However, these methods are only used to
represent one, or at most two, different movement types;
for more different movements, different models have to be
trained. ProMP can combine and switch between different
movements, and its dimension reduction model, dimension
reduction ProMP (DR-ProMP) [6], was investigated for high-
dimensional movements based on Expectation Maximization
(EM). However, ProMP-based methods blend the movement
via points which the trajectories go through, and require
multiple demonstrations for each movement type to construct
a sufficient probabilistic model.

In previous work [7] we have shown that, in a reinforce-
ment learning setting, variational autoencoders (VAE) can
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build more meaningful latent spaces than autoencoders or
PCA. Following that line of thought, here we propose to
use a VAE rolled out in time to reduce the dimensions
for DMPs. To this end, we use a technique called Deep
Variational Bayes Filtering (DVBF) [8]. Our approach is an
incremental advancement of DVBF and DMP by exploring
DVBF to learn movements from multi-demonstrations, as
well as benefiting from the latent representation of time-
dependent VAE. Integration of DMPs with DVBF increases
the constraints of the latent space, and therefore forces
the distribution of the movements in the latent space to
be meaningful. In our approach we train a model with a
shared latent space for various similar as well as different
movements. In contrast to ProMP, our method switches the
movement completely, and does so by representing different
movements in different “parts” of the latent space.

II. METHOD

Our approach consists of a modified DVBF which repre-
sents the high-dimensional data in a latent space and DMPs
which learns movements from demonstrations in the latent
space.

A. Dynamic Movement Primitives
DMPs are generally trained from a demonstration of a

movement in its joint space or Cartesian space, which can
then be re-used and adapted to the environment [1]. A DMP
is a point attractor system written as a second-order dynamic
model,
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where ⌧ is a time constant and ↵ > 0 and � > 0 are damping
constants. The trajectory y is attracted to the goal position
g by the difference term (g� y). Usually, the last frame of
the demonstration is set as the goal during training.

The forcing term f encodes the trajectory dynamics, which
drives the system to the goal. Following [1], a basic version
of f is chosen as a linear combination of basis functions  i,
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where t represents the time steps. We focus on the discrete
case, but an extension to rhythmic dynamical systems is
straightforward by modifying the basis functions  . We write
a discrete  as [1]
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where constants ci and �i are the width and centers of the
Gaussian basis functions, respectively.

During training, with the demonstration y

demo and its
computed derivatives, the target values of the forcing term
results in,
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where L is a loss function.

B. Variational Autoencoder
In this section, we give a brief overview of variational

autoencoders (VAE), which is the basic framework of time-
dependent VAE for DMP.

1) Variational inference: Variational inference [9] is a
method to approximate the intractable posterior distribution
p(z|x) through a tractable approximate variational distri-
bution q�(z). x 2 Rd and z 2 Rd0

are the observed
data and its corresponding latent representation, respectively.
As the dissimilarity function, the Kullback-Leibler (KL)
divergence between the approximate distribution q� and the
target distribution p is minimized to obtain the variational
parameter � for the optimal approximate distribution q�. The
marginal log-likelihood is written as

log p(x) = Eq�(z)


log

p(x, z)

q�(z)

�
+KL

�
q�(z) k p(z|x)

�
.

(6)

log p(x) does not depend on q� and the KL term is non-
negative; therefore, the first term, the variational lower bound
Lbound

(q) is maximized to minimize the KL divergence.
2) Variational autoencoder: A Variational autoencoder

(VAE) [10] is a type of autoencoder [11] based on vari-
ational inference. The posterior distribution is defined as
p✓(z|x) / p✓(x|z)p(z). The prior p(z) is defined as an
isotropic Gaussian distribution N (0, ID). The observation
model p✓(x|z) is defined by a parameterized distribution,
which is a generative neural network taking z as an input and
outputs the parameters of the distribution. This distribution is
chosen Gaussian for continuous data, or Bernoulli for binary
data. ✓ are the weights of the neural network.

The approximate distribution q�(z|x) is also a neural
network which takes as input x, outputs the parameters of
the distribution over z and has the weights �. It is called
inference network or recognition network.

� and ✓ can be jointly updated by optimization through
back-propagation. VAE maximizes the variational lower
bound to optimize the parameters ✓ and �.

log p✓(x) � Eq�(z|x)


log

p✓(x, z)

q�(z|x)

�
(7)

= Eq�(z|x)[log p✓(x|z)]�KL
�
q�(z|x) k p(z)

�
,

where the first term can be considered as a reconstruction
loss, and the second is a regularization term which constrains
the approximate posterior q�(z|x) to be close to the prior
p(z).

C. DMP in latent space
The VAE, as formulized in the previous section, has

no internal state, and therefore cannot represent temporal
dependencies in the input data. There are several ways of
dealing with this; one possibility is extending the VAE to be a
recurrent neural network [12], [13]. While having their merit
in, e.g., anomaly detection [14], their prediction capabilities
are not as good as expected [15]. Furthermore, it is not clear
how a control signal can be included.

A different, very promising approach is obtained by rolling
a VAE out in time. This approach, called Deep Variational
Bayes Filtering (DVBF) was published in [8]. In this paper
we use DVBF to embed DMPs in VAE (see Fig. 1). By
using this approach, we can directly learn all parameters—
including the DMP parameters—using back-propagation.
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Fig. 1: VAE-DMP information flow for the generative move-
ment.

1) Problem Formulation: Given a movement x

1:n =

{x
1

,x

2

, ...,xn}, where n is the length of the movement,
we want to model the movement in latent space z

1:n =

{z
1

, z

2

, ..., zn}. In order to embed DMP into DVBF, (1) is
formulated for the transition function from zt to zt+1

in the
latent space as
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where dt is the step duration, zt is the movement in
latent space at step t, zgoal is the goal in the latent space
corresponding to the final frame of movement in the joint
space xn, ft 2 Rd0

is modified from (2) by changing the
dimension to fit the latent space, ✏ = ✏̂w✏, ✏̂ ⇠ N (0,⌃✏)

is the system noise, and w✏ 2 Rd0⇥d0
is the weight for the

noise, so that the scale of the noise is learned autonomously.
Eq. (8) can be simplified as
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where the transition matrix is computed as
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and the control input is defined as
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I is an identity matrix.
Instead of generating f

target as (4) and (5) to find its
parameters, we embed the DMP transition into DVBF and
train its parameters through backpropagation.

2) Inference model: The encoder network is only used
for the initial and goal states. We take a diagonal Gaussian
distribution with mean µt and covariance ⌃t. The encoding
process is q�(z|x) = N (z|µt, diag(�

2

t )).
The mean and covariance are encoded by a neural network

µ

enc

t = w

enc

µ h�(xt) + b

enc

µ ,

�
�

enc

t

�
2

=

�
w

enc

� h�(xt) + b

enc

�

�
2

, (12)

where, h� denotes an activation function. wenc

µ , wenc

� , benc

µ

and b

enc

� are parameters. Based on a deep neural network,
we parameterize the mean and variance of a Gaussian
distribution.

We can get another representation of a latent space of
the initial and goal frames by a transition function z

?
t =

g(zt). The transition function g can be, e.g., a multilayer
perceptron (MLP). In the sequel, we will use z

? in lieu of
z. The transition forces the Gaussian-shaped latent space to
be replaced by any other kind of shapes.

During training, ✏t+1

is predicted from zt and xt+1

, while
✏ is sampled from the prior without zt or xt+1

for generating
movement after training. ✏ is diagonal Gaussian distribution
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where � are the weights of neural network. The mean µ

noise

t

and covariance ⌃noise

t are encoded by a neural network.
3) Generative model: We segment a movement into sub-

sequence with length of l. The generative model includes
decoders with l = 1
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and with l > 1
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(15) is the transition from zt to zt+1

, which is described in
the next subsection.

We take a Gaussian distribution with mean and constant
covariance. Reconstruction (“decoding”) of x is by another
neural network,

µ

dec

t = w

dec

µ h✓(zt) + b

dec

µ ,

�

dec

t
2

= b

dec

�
2

(17)

'

'

'+

Fig. 2: Neural network structure of the time-dependent VAE
in time step t. The network structure is similar to a regular
autoencoder with the addition of the DMP transition function
in the center. The nodes ✏t�1

are stochastic with mean and
variance created by the neural network. The autoencoder
takes zt�1

together with xt as input.

where h✓ is the activation function. wdec

µ , wdec

� , bdec

µ and
b

dec

� are parameters.
Reconstruction through z from both (14) and (15) enforces

the zt+1

from the latent transition to approximate the zt+1

from the encoder. Therefore, the training model contains both
z’s of subsequence length of 1, which allows xt of every time
step to be reconstructed from zt of (14), and subsequence
length of n.

4) Transition model: In the latent space, we predict the
local transformation parameters of f and ✏ (see Fig. 2). The
transition is described as

zt+1

= f(zt, ft, ✏t), (18)

where f is a function of (9). ✏ is sample-specific noise.
With meaningful transition priors, it avoids overfitting and
has meaningful manifolds in the latent space.

The initial ˙

z of the starting of the sequence can be
predicted directly from the encoder with x

1:m as the input
and {z, ˙z} as the output, where 1 < m  n. Besides,
another approach initializes z

0

through the first step z

1

and
its previous step z

0

using (8).

D. Learning

The learning process is through stochastic gradient varia-
tional Bayes.

Based on DVBF, the lower bound is rewritten as,
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where ✏
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encoded into z in (19).

During the training process, ✏ can act as a shortcut to
encode all of the dynamical information; as a result, f

is not learning meaningful values. The annealing schedule
improves the training of f and smooths out these local
minima [16]. (19) is written as

L(x
1:n, ✓,�|f1:n) =E

q�

⇥
cta log p✓(x1:n|z1:n) (21)

� log q�(✏1:n|x1:n) + cta log p(✏1:n)
⇤
,

where cta = max(1, 0.01+ ta/Ta) and ta increases linearly
from 0 after every training epoch until cta equals 1.

Having only a small number of demonstrations increases
the difficulty of training, since Monte Carlo estimation is
used in (18) as in [10]. Additionally, a long sequence
demonstration increases the training time and weakens the
structure of the latent space at the start of the sequence,
because of vanishing and exploding gradients. Therefore, we
split a sequence up into overlapping subsequences to increase
the batch size and shorten the sequence. On the contrary, the
model has difficulties in recognizing the dynamics of the
movement with too short subsequences, and consequently,
the latent space might be unstructured. Thus, as a hyperpa-
rameter, the length of the subsequences, lsub, can be searched
during training.

E. Multi-demonstration model
We extend VAE-DMP by training a single, shared latent

space with multiple motion sequences. With multiple motion
sequences [17], the model (a) is not limited by the number of
sequences, and (b) is more adaptable to a new movements,
e.g., movement switching or goal changing.

Instead of learning the weights w for each type of move-
ment individually we use a neural network which recognizes
the correct weights from the observations. That way we get
a continuous set of weights where the mapping between
movement type and weights is trained by backpropagation.
This neural network has the following shape:

w(x

1:n) = g

2

�
g

1

(x

1

), g

1

(x

2

), g

1

(x

3

), . . . , g

1

(xn)
�

(22)

where g

2

and g

1

are each fully connected neural networks.
We will call this whole network MLPw.

F. Movement switching
The first generalization of the model is switching the

movements after training by simply switching the weight w
of f and the goal zg . We have ⌘

i 2 [0, 1] for movement i.
The weight and goal of the new movements at t step are
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Switching from movement A to movement B, ⌘A is changed
from 1 to 0, and ⌘

B from 0 to 1. Given the starting point
and the duration of switching, ⌘A and ⌘

B can be estimated.
Goal changing enables the latent value to transfer from

movement A to movement B, while the force term enables

the movement to follow the demonstration trajectory B after
switching. If we only change the goal but not the force
term, the movement also switches from A to B; however,
the trajectory is quite random after switching.

G. Goal changing
The flexible properties of DMPs are retained in VAE-

DMP. For instance, it is able to reach new set points by
simply changing the goal after training, while keeping the
invariant properties. Following [1], to keep the invariant
properties, an extra term of (g � y

0

) is multiplied to
the right side of (2). In addition, it can be multiplied by
(g � y

0

)/(|g
fit

� y

0,fit|+ ⌘) instead to avoid coinciding y

0

and g, where fit represents the training data and ⌘ is a very
small positive constant.

Other reformulations of DMP, e.g. to do obstacle avoid-
ance [18], can be implemented in VAE-DMP straightfor-
wardly, but here we only focus on goal changing.

III. EXPERIMENTS

Experiments with two data sets are performed to evaluate
VAE-DMP. The first data set contains optical tracking data
of human movements. The second data set is obtained from
6-DoF robot arm simulations.

A. High-dimensional human movement
The data set for the first set of experiments is the CMU

Graphics Lab Motion Capture Database, which is a part of
the KIT Whole-Body Human Motion Database1. These data
are downsampled and preprocessed as described in [5], and
the resulting data consist of multiple movements, each of
which is coded in 70 time steps of 50-dimensional vectors.
The data is normalized to zero mean for every joint. Since
we focus on learning relative movements, the body center
is fixed. We split the movements up into subsequences with
lsub = 10 time steps.

The DMPs are set to critical control by setting � = ↵/4

[1]. The VAE architecture is 5 layers with d inputs, 200
hidden neurons, d0 latents, 200 hidden neurons, d outputs,
where rectifier and identity activations are used for the hidden
layers and the output layer, respectively. The structure of the
VAE is shown in Fig. 2. The neural network g

2

inside the
MLPw network has 70⇥ h inputs and 50⇥ d

0 outputs. The
g

1

network takes 50 inputs and outputs h. Where h is 10 for
the humanoid experiments and 5 for the robot experiment.
Both g

1

and g

2

have no hidden layers. g

1

uses softmax
as activation function and g

2

uses the identity activation
function. The structure and sizes of the MLPw network can
be seen in Fig. 3. The hyperparameters of DMP and VAE
are chosen based on the reconstruction error and the training
time by grid search.

1) Learning different movements: In this task we train
multiple demonstrations of walking, kicking, taichi and
punching from 5 subjects (viz. subject 35, 74, 49, 120, and
143), all in one and the same model, and compare the results
when we train each movement type to a single, specialised

1
https://motion-database.humanoids.kit.edu
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Fig. 4: Error of the reconstruction of the movement model-
ing. The error is MSE ± SD of every single subject averaged
over all joints over a whole movement in radians. The result
is evaluated using Mean square error (MSE ± standard
deviation). The left and middle figures show MSE and SD
averaged over 5 subjects. The right figure is the mean output
SD (directly predicted from the encoder) of the VAE-DMP
reconstruction. It is a constant value for every joint during
the whole movement, so that output SD of VAE-DMP 2D,
3D, 5D, and 7D do not have variance.

model (called “VAE-DMP single”). We also compare the
results to our previous “AE-DMP single” [5], in which we
train one movement per autoencoder. Fig. 4 shows the pose
reconstruction error of our previous work of AE-DMP single
with 5D latent space, VAE-DMP with 2D, 3D, 5D and 7D
latent space, and VAE-DMP single with 5D latent space. For
VAE-DMP single we used 120 rather than 200 hidden units
in each hidden layer. Noticeable is the improvement over
our previous model, AE-DMP single. When sufficient latent
variables are chosen (in this case, 5 or 7), the error is much
lower, even for the approach where all poses are represented
in one model. The lowest reconstruction error is obtained in
VAE-DMP single, with 7D VAE-DMP a close second.

Although the reconstruction accuracy of VAE-DMP with

z1

         z2
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kicking
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punching

Fig. 5: Movement distribution in 2D latent space. z
1

and z

2

are two latent dimensions, and every body pose in the joint
space is generated from its corresponding latent state.

z1

z 2

(a) VAE

z1

z 2
(b) VAE-DMP

Fig. 6: Trajectories of five human movements in the 2D latent
space using VAE and VAE-DMP. The movements are colored
the same as Fig. 5

2D latent space yields to that with 7D latent space, we can
more easily plot the former. Fig. 5 therefore illustrates the
distribution of five movements in the latent space of VAE-
DMP 2D. The patterns of the various generative movements
can be seen. The walking is periodic, while punching is a
single line in latent space. Kicking is a large-range move-
ment, so that it has large range in the latent space, while
balancing only has relative slight movement, and the range
in the latent space is small.

The latent space of VAE-DMP is more meaningful than
that of VAE (see Fig. 6). In the VAE latent space, a sequence
of movement may spread far with different spacings for
complex movements such as taichi, since it does not encode
time information into the latent space. Accordingly, big gaps
between two time steps may cause difficulties for DMPs.
In addition, the a large geometry distance in joint space
may result in a small distance in the VAE latent space such
as kicking. With correctly encoding the geometry distance
from the joint space, VAE-DMP can improve the multi-
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Fig. 7: Nine movements represented in the 3D latent space
of a single VAE-DMP.

Fig. 8: Smoothness of the latent space. The plot represents
values of dx/dz, which vary between 4.7 and 7.4 for a
2D VAE-DMP. Higher values—indicated by lighter areas—
mean that a step in latent space corresponds to a larger
body movement in x. The colored points correspond to the
demonstrated movements, as in Fig. 5. The data are evaluated
at 120⇥ 120 grid points in the 2D latent space.

demonstration model ability compared with VAE.
Training with additional 4 walking movements from other

subjects (viz. Subject 86, 91, 114 and 139), we have the
results shown in Fig. 7; in this case, a VAE-DMP 3D is
used. The five walking movements distribute in a cluster,
disjunct from the other movements. The leg movements
cluster approximately on the positive of the z

3

axis, while
the arm movements cluster on the negative of the z

3

axis.
2) Latent space smoothness: The latent space of a VAE-

DMP codes the learned movements in a compact, multivari-
ate Gaussian space. As seen in Fig. 5, the demonstration
trajectories do not span the whole latent space. But what
movements are coded between the demonstrated trajectories?
To verify that no discontinuities or “large jumps” occur when
sampling a trajectory in latent space, we evaluate dx/dz

over the whole latent space of a VAE-DMP. The result for a

Fig. 9: Body postures in the 2D latent space, in the space
spanned by the multivariate Gaussian. The area covering a
variance of � = 1 is plotted.

VAE-DMP 2D is shown in Fig. 8. In the whole latent space,
dx/dz varies between 4.7 and 7.4 and is indeed very smooth.
Similar smooth latent spaces are seen in VAE-DMP 3D and
VAE-DMP 5D.

The joint space movements generated in 2D latent space
is illustrated in Fig. 9. As z represents a multivariate normal
(µ = 0,� = 1) distribution, we can immediately compute
the probability of a certain movement from its z. As the plot
shows, the movements between the demonstrated movements
are smoothly interpolated. But also movements beyond that
represent viable positions. Only when we move far away
from the mean, starting between 2� and 3� does the latent
space represent nonsensical postures. Of course, we can
increase the training data set to obtain a larger confidence
interval.

3) Movement switching: A model is trained by multiple
demonstrations of a walking and jogging. i = 1 and i =

2 represent jogging and walking in ⌘

i, respectively. The
movements are switched from step 20 until step 38 (see
Fig. 10). The starting and the duration of the switching can
be changed. The model has a 5D latent space, and the largest
two variance of the latent space are plotted. After it adapts
to the walking from jogging, it follows the demonstration
trajectory of walking. The generated latent values are not
necessary to reproduce the latent values of demonstration
precisely, while the reconstruction ability is more significant.

B. Robot simulation for goal changing

In this experiment we simulate a 6-DoF KUKA robot
using the Robotic Toolbox [19]. In the data set, the length
of a demonstration is 76 steps. The subsequence length is
10 time steps. For the representation of the movement in the
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(a) Movement switching in latent space.

(b) Movement switching observed in state space. The figures
of top three rows are plotted by every 6 time steps. We choose
left hip for representing the joint, since it exactly follows the
walking and jogging rhythm.

Fig. 10: Movement switching from walking to jogging.

VAE, we use 5 layers with d, 100, d0 = 2, 100, d. The input
dimension of g

1

is d and the output dimension h is 5. g
2

takes n⇥ h inputs and has 50⇥ d

0 outputs.
The demonstration x

i is generated by moving the end-
effector linearly from a starting point p

0

to subsequent
points pi, i 2 {1, 2, . . . , 5} in Cartesian space. x

1 is
the demonstration for DMP, while {x1

,x

2

, ...,x

5} are the
demonstrations for VAE-DMP (see Fig. 11). p

6

and p

7

are
the results of changing the goal to [x = 0.5, y = 0.5] and
[x = 0.8, y = 0.8], respectively using VAE-DMP with given
the force f

1. All movements were planar, keeping z constant
at 0.3.

For method comparison, we use the same version of DMP
for both VAE-DMP and DMP. As described in Sec. II-G, to
keep the invariant properties [1] for changing the goal, both
forcing terms f in VAE-DMP and DMP are multiplied by
a scaling term, specifically, (zgoal � z

0

) for VAE-DMP cq.
(g � y

0

) for DMP.
Fig. 12 shows the results of both DMP and VAE-DMP

when changing the goal to [0.8, 0.8]. The optimal trajectory
is the movement of the new goal with the end-effector
moving linearly from p

0

. The optimal trajectory is not shown
in the training data set but only its final frame is given as the

Fig. 11: Robot data set.

new goal. It can be seen that VAE-DMP is able to generate
a movement which is close to the optimal trajectory for the
goal changing. However, DMP can only keep invariance of
the demonstration for every joint independently, the effect of
which is most clearly seen in joints 2 and 4. In this case,
the robot joints are highly possible to be out of range. In
contrast, VAE-DMP correlates the joints. In this experiment,
VAE-DMP learns the invariance of the end-effector instead
of every single joint. DMP requires manual selection of the
important feature (e.g., joint angles of a robot or Cartesian
space of the end effector) to learn, but VAE-DMP is able
to learn the optimal trajectory autonomously and reproduces
natural movements.

In joint 5, the start and end angle are almost the same
in the demonstration. This makes generalization with DMP
difficult, as the force term is almost zero. In VAE-DMP, the
joints are correlated in the latent space, so that the beginning
and ending values are not the same.

A video of the results is accompanied, which can be
downloaded at: https://brml.org/projects/dvbf

IV. CONCLUSIONS

In this paper, we presented a novel approach to embed
DMPs into a time-dependent variational autoencoder. Using
a new approach called Deep Variational Bayes Filtering,
we can embed DMPs in the latent space of a variational
autoencoder, while simultaneously representing a large range
of different movements in one single DVBF network. Thus
we can also create smooth transitions between different
movements. While DMPs can only independently keep the
invariance per single joint, our approach allows the model to
unsupervisedly learn the invariance features of the trajectory.

Our next step in this work is to validate this work
with larger parts of the KIT Whole-Body Human Motion
Database. Furthermore, we plan to investigate its use in
humanoid motion planning.
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