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Evidence of muscle synergies during human grasping
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Abstract Motor synergies have been investigated since the 1980s as a simplifying
representation of motor control by the nervous system. This way of representing
finger positional data is in particular useful to represent the kinematics of the
human hand. Whereas so far the focus has been on kinematic synergies, that is
common patterns in the motion of the hand and fingers, we hereby also investigate
their force aspects, evaluated through surface electromyography (sEMG). We es-
pecially show that force-related motor synergies exist, i.e., that muscle activation
during grasping, as described by the sEMG signal, can be grouped synergistically;
that these synergies are largely comparable to one another across human subjects
notwithstanding the disturbances and inaccuracies typical of sEMG; and that they
are physiologically feasible representations of muscular activity during grasping.
Potential applications of this work include force control of mechanical hands, es-
pecially when many degrees of freedom must be simultaneously controlled.

Keywords rehabilitation robotics · grasping · electromyography

1 Introduction

The human hand has a rather complex biomechanical structure, and a to date
not completely understood neural architecture to control it. In the analysis of the
biomechanical and behavioural aspects of the hand, one of the most striking as-
pects is the high redundancy of its structure, seemingly having many more degrees
of freedom than are actually used/required. In order to cope with this apparent
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redundancy, the concept of synergies has been used to describe functional depen-
dencies among degrees of freedom. Bernstein [3] defines the level responsible for
coordinating large muscle groups and different movement patterns as the level of
muscular-articular links or synergies. Thus the state space of the system can be
reduced to a reduced number of independent dimensions. A similar finding is the
well-known combination of motor primitives in frogs by Mussa-Ivaldi et al. [24].

A number of recent experimental studies confirm this theory for the human
hand, too. As shown by Santello et al. [28,29], the simultaneous motion of the
fingers is characterised by coordination and covariation patterns that reduce the
number of independent degrees of freedom to be controlled by the neural system.
Still, although some constraints on the musculotendon system, as well as on the
peripheral and central neural system, can be identified, a clear relationship between
the finger kinematic constraints and the underlying muscular activity remains to
be analysed. As a matter of fact, the source of such kinematic synergies in the
human hand remains a matter of debate; indeed, the biomechanical structure of
the hand, in which tendons activate multiple digits at the same time, while the
related muscles share common bases, is one source for the synergies (see, e.g.,
[23]); but also the spinal circuitry, mapped only to a small extent to the human
hand, co-activates muscles and thus defines synergies [32]; and at the highest level,
cortical organisation [21] is suspected to play a dominant but variable role in these.

We are hereby concerned with the expression of force synergies in the human
hand, when placed in a real-life environment, i.e. in our case, grasping. When an
object is grasped/held/manipulated, the relationship between hand kinematics and
the forces involved becomes much more complex; to make a detailed analysis, one
should use a detailed model of the environment, of the involved objects and of the
musculoskeletal system in order to reconstruct the forces from the kinematic data.
The other side of this issue is represented by impedance control of robotic (possibly
prosthetic) hands: impedance-based control schemes lead to a much higher control
stability, especially in the case where physical contact is involved [18,1]. But the
generally high number of degrees of freedom of a poly-articulated, multi-fingered
mechanical hand requires at least a coordination principle. It is likely that a few
simultaneous and coordinated forces can be produced and then mapped onto the
degrees of freedom involved without losing too much dexterity; as kinematic syn-
ergies do exist in the control of the human hand, it seems reasonable to believe
that analogous synergies at the level of muscle activation should be found as well.

We hereby use surface electromyography (sEMG) to detect muscular activation
in the forearm during a grasping task in humans, and we then check whether a
similar simplifying principle (which we will call muscle synergies from now on)
can be found. Muscular activity measured via sEMG relates in the simplest case
nearly linearly to the force exerted by a muscle [16]; but given the complexity
of the arm/forearm/hand musculoskeletal system, there is no a priori indication
as to whether such a principle should exist, although finger position synergies
have been found in [28]. Some results mapping sEMG activity to finger, wrist
and arm position have actually appeared, e.g. in [35,33,37], but the assumption
there is that sEMG relates to isotonic/isometric muscle configurations which, in
free movement, can roughly be associated to positions. Here we are concerned
with grasping, therefore those results are not relevant to this work; when dynamic
interaction with the environment (e.g., objects to be grasped) comes into play, any
such trivial relationship is likely to be broken down.
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In this paper we show that muscle synergies do exist. We describe an experi-
ment in which 5 human subjects would grasp 5 objects in 5 accordingly different
ways, and show that there is considerable statistical overlapping among muscle
synergies found across the subjects. In other words, all subjects seem to enact
a certain grasp by activating the same muscles (or groups of motor units) all
over. Muscular activity is gathered using sEMG via 10 commercial prosthetic elec-
trodes, placed on the forearm of each subject without targeting any particular
muscle. (This qualifies our setup as simple, easy to use, which is a plus when
thinking of possible application of this research.) The fact that common human
muscle synergies can be identified, notwithstanding the well-known problems asso-
ciated to sEMG (muscle cross-talk, sweating, inter-subject anatomical differences,
inaccurate electrode positioning and so on) makes this result rather interesting;
in particular, it paves the way to synergistic force- or impedance-based control of
robotic hands. Once muscle synergies are identified for a subject, they could con-
stitute high-level force commands for the hand, which would then be mapped back
onto the single degrees of freedom of the hand itself, therefore greatly simplify its
control. (A promising result along this line of research appears, e.g., in [38].)

A further qualitative analysis of the muscle synergies and of how the grasps
map onto them reveals some regularities that can be actually mapped onto the
anatomy and dynamics of the forearm, making this result interesting from the
point of view of physiology, too. A similar line of research has been so far pursued,
as far as we know, only in primates and only loosely in humans. Primates have
been shown to generate consistent-across-subject sEMG patterns in [7,27] when
engaged in simple grasping actions; in those works up to 19 needle (invasive)
sEMG electrodes were used on (in both papers) two animals. In particular in
[27] it was shown that three synergies accounted for 81% of the sEMG variance,
but the analysis performed was time-dependent, meaning that synergies are short
temporal profiles of activation rather than single sEMG samples. In this work we
concentrate on a simpler PCA-based dimensionality reduction (which is the type
effectively used in [7] as well as, e.g., in [29]) and obtain quantitatively similar
results, that is, as far as the amount of variance is concerned.

Human beings have been studied from this point of view, e.g., in [19], where a
detailed musculoskeletal model was used to reconstruct finger joint torques from
kinematic data (obtained with a Cyberglove similar to ours). In this case too, sim-
ilarity among grip patterns was found. Of course, this analysis cannot be applied
to grasping since joint torques in the latter case depend on the objects, too.

The work we present here is novel in that, as far as we know, no detailed
analysis of human sEMG patterns during grasping (their inter-subject similarity,
repeatability, stability and anatomical relevance) has been so far attempted on
humans. We could afford such an analysis since we use surface electromyography,
which is cheap, non invasive and easy to use—but it cannot bear detailed infor-
mation about single muscles (let alone single motor units, although some work on
sEMG decomposition [20] points to that direction).

The paper is organised as follows: we describe the experimental setup and
protocol in Section 2, experimental results are presented in Section 3 and con-
clusions are drawn in Section 4. This paper can be seen as the natural follow-up
to [12], where a much less detailed analysis was carried out, and no analysis of
physiological relevance appeared.



4 Claudio Castellini, Patrick van der Smagt

2 Experiment description

Fig. 1 Data capturing devices and sEMG electrode arrangement. (left to right) the Cyberglove
we used, an 18-sensor model; schematic representation of the location of the sensors on the
Cyberglove (22-sensors model); 5 sEMG electrodes arranged with rubber bands on a Velcro
strap; labels denote ventral (v1, v2, v3) and dorsal (d1, d2) electrodes.

2.1 Data gathering

2.1.1 Hand motion

An 18-sensor right-handed Cyberglove (Cyberglove Systems, www.cyberglovesystems.
com, see also Figure 1, left panel) was used to gather the finger positions. The Cy-
berglove is a light, fabric, rather elastic glove, onto which 18 strain gauges are
sewn; the sewing sheaths are chosen carefully by the manufacturer, so that the
gauges exhibit a resistance which is proportionally related to the angles between
pairs of hand joints of interest. The device returns 18 8-bit values proportional to
these angles, having a resolution of less than one degree. The resolution is declared
to slightly change accordingly to the size of the subject’s hand, careful wearing and
the rotation range of the considered joint. (For practical reasons the subject must
wear a friction-reducing glove below the Cyberglove; an initial round of data gath-
ering revealed that this would not limit the precision of the device.) We hereby
consider all sensor values of the glove, that is, 18 8-bit values. Figure 1, centre
panel shows the placement of the sensors on the 22-sensors variant of the glove,
which has 4 additional sensors at the distal phalanges.

2.1.2 Surface electromyography

Muscular activity was gathered using ten Otto Bock MyoBock 13E200 active,
double-differential sEMG electrodes (www.ottobock.com). These electrodes pro-
cess the raw sEMG signal using an on-board amplification / bandpass-filtering /
rectifying circuit. In the typical case when they are applied over a single, large
muscle, the resulting output is quasi-linearly related to the force exerted by the
muscle, or rather, to the percentage of the maximum voluntary contraction of the
muscle (see [15,16]; in [39], the raw signal is visible in Figure 3(a) whereas the
signal obtained from these electrodes is similar to that in Figure 3(c)). The use
of this signal rather than the raw one is preferred here since digital processing
is considerably simplified; the unavoidable delay of around 200 ms introduced by
filtering can be neglected for the purpose of our study, due to the chosen data
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processing (see below). The usefulness of this kind of electrodes, and of the signal
they provide, has already been demonstrated at least in [11,10].

The electrodes were placed on the subject’s forearm surface according to the
following rules: they were split in two sets of five, each set arranged in two lines
of two plus three electrodes, firmly tied to a Velcro strap using elastic bands (see
Figure 1, right panel). The bands and straps were tied around the forearm so that:

1. the first band surrounded the forearm about 5 cm below the elbow,
2. the second band surrounded the forearm midway between the elbow and the

wrist,
3. the groups of two electrodes would lie on the dorsal side of the forearm whereas

the groups of three would lie on the ventral side.

This placement is intentionally largely irrespective of the (internal) anatomy
of the human forearm, so that no medical consultancy is required (no search for
relevant muscles is performed before the straps are secured). Uniform placement,
irrespective of anatomy, has already been demonstrated effective, even on amputees
[10], for sEMG signals classification and regression purposes. In the following we
will refer to the electrodes below the elbow as to the proximal electrodes, to those
midway on the forearm as to the distal electrodes, and to the electrodes in general
as ventral or dorsal according to the side of the forearm they were placed upon.
Ventral electrodes are denoted v1, v2, v3 whereas dorsals are denoted d1, d2 (see
Figures 1 (right panel) and 3).

The electrodes are connected to a DAQ card sampling the sEMG signals at
100 Hz.

2.2 Experimental protocol

Six healthy human subjects (all male, all right-handed, age 24÷45yrs, 32±8.2yrs)
joined the experiment. Informed consent was obtained from all of them; their
data have been since then anonymously stored after approval by the DLR ethical
committee was obtained. The subjects would sit comfortably in front of a desk;
their right hand and forearm would be fitted with the electrode sets and the glove;
they would then be instructed to put the right elbow on the chair’s armrest, and
the right hand on the table; lastly, they were instructed to relax. The forearm was
kept in a half-pronated posture, such that its ventral side would be parallel to the
sagittal plane, as if to grasp cylindrically an object (see Figure 3).

Two spots on the table were highlighted by a clearly visible marker; then, under
the strict request not to rotate the forearm, the subjects would be instructed to
reach and grasp an object placed onto the desk over the first marked spot; to carry
it over to the second spot; to drop it over there; and lastly to go back to the resting
position. (Each object was lying in such a position that it would be comfortably
grasped without rotating the forearm.) The operation was indifferently performed
this way, or from the second to the first spot. When the object could not be easily
laid standing, two mugs were used to drop it inside them. This way, a reach /
grasp / carry / drop / rest sequence was performed.

The requirement to avoid lower arm rotation was due to the necessity of keeping
as much as possible constant the position of the electrodes with respect to the mus-
cles of the forearm. It is easy to ascertain by palpation, actually, that the forearm
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skin moves dramatically with respect to the muscles, when pronating/supinating.
Such an uncontrolled movement would have probably introduced too much noise
in the gathered data. The experimenter took care that the pronation/supination
movement was actually never performed during the experiment.

The above described sequence was repeated for 20 times for each object; 5
objects were in turn used, each one to be grasped in a different way. Since 6
subjects joined in the experiment, it was expected that at the end 600 sequences
would be gathered. The objects and grasps selected were: a DVD (to be grasped
with a flat grasp), a pen (pinch grip), a small plastic container (tripodal grip),
a dry wipe marker (small power grasp) and a mug (large power grasp). Figure 2
depicts the objects and the ways to grasp them. The movie “grasping.avi” provided
as supplemental material shows some typical grasping sequences performed by a
subject; in the movie, the carrying phase, that is the phase during which the
object would be held firmly and carried from one spot to the other, is clearly
indicated. The carrying phase is the time interval of interest, since it is assumed
that during it, a stable grasp configuration would be achieved. The experimenter
verified visually that that would be the case in all grasps considered; the fact that
(see Figure 1, left panel again) the Cyberglove we used has no fingertips proved
here to be very useful, as it allowed the subject retain full friction at the finger
pads, allowing for completely natural grasps.

Fig. 2 The five objects while being grasped by a subject: (left to right) flat grasp, pinch grip,
tripodal grip, small power grasp and large power grasp. Notice that the subject never pronates
and/or supinates the forearm, as instructed.

Each sequence lasted less than 3 minutes for a total of about 15 minutes for
each subject. No subjects reported fatigue, discomfort or pain during or after the
experiment.
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Fig. 3 Bird’s eye view of the experimental setup; the proximal and distal ventral electrodes
(v1, v2, v3) are clearly visible, fixed on the subject’s right forearm. (The Figure also depicts a
pressure sensor held with the left hand which was not used in the data processing.)

2.3 Data synchronisation and preprocessing

Data synchronisation was enforced on a Windows PC by gathering data from
each device asynchronously and accurately time stamping each received datum.
Time stamping was enforced by the HRT library [25], giving a precision of up to
1.9µs. Sample-and-hold interpolation was used to find synchronised values for the
electrodes and glove sensors. All data were collected in batches, each one labelled
with a corresponding subject and grasp index.

As the setup did not include any way to indicate precisely when the carrying
phase would happen (i.e., an instrumented object or a pressure sensor), a manual
procedure was enforced offline to isolate it for each sequence. During the procedure
the value of the glove index finger sensor and the sum-of-squares of the sEMG
electrodes were visualised; the experimenter would then identify and note the
intervals corresponding to the carrying phase.

Fig. 4 Typical “good” grasping sequence (subject 1, flat grasp); correlation is apparent be-
tween the sEMG power and the index finger position.

An example sequence (subject 1 doing a flat grasp) is shown in Figure 4.
Correlation is apparent between the two signals; the high-valued periods denote
the carrying phase, when muscle activity was maximum and the index finger would
be flexed over the object, as opposed to the resting periods, characterised by low
muscle activity and the index standing in the resting position (low values). It must
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be noted that in other cases the correlation is not apparent and that is why this
process had to be manually enforced. For instance, in the large-power grasp case,
the index finger would assume a lower value during lifting than in the resting phase.
Moreover, some of the lifting periods were not characterised by enough muscle
activity or by the expected kinematic postures, due to local failure of the sensors.
The experimenter excluded these sequences from the analysis. As well, subject 4
exhibited little or no measured muscle activity, so these data were removed from
the analysis, too. This was later on determined to be due to inaccurate sensor
placement at the beginning of the procedure.

At the end 97.4% of the original data, that is 487 lifting intervals out of the
expected 500, were identified: 5 subjects repeating each of the 5 grasps for 20
times. Data were then normalised by subtracting the mean values and dividing
by the standard deviations, dimension-wise, per-subject, in order to remove the
intra-subject differences due to the hand size and the level of muscle fitness.

Lastly, each sequence was averaged out dimension-wise. These average values
were assumed as representatives of stable grasps enforced during each carrying
phase. This operation resulted then in 487 new samples, each one denoting a se-
quence labelled by a subject and grasp index. For each sample, two sets of features
were obtained: the 18-dimensional kinematic features obtained from the glove, and
the 10-dimensional sEMG features obtained from the sEMG electrodes. Addition-
ally, sometimes only the proximal or the distal electrodes have been considered,
and both sets are 5-dimensional. Two sets of labels were obtained, one according
to the subjects (1, 2, 3, 5, 6) and one according to the grasps (flat grasp, pinch grip,
tripodal grip, small power grasp and large power grasp, numbered as 1, 2, 3, 4, 5).
In mathematical terms, we have built four sets of samples Xglove, XEMG, Xdist

and Xprox, each one containing 487 elements, denoted as X = {(xi)}ni=1, where
n = 487 and xi ∈ Rd, where d is 18 for Xglove, 10 for XEMG and 5 for Xdist and
Xprox. Two sets of labels are then built, Ysubj and Ygrasp where Y = {(yi)}ni=1

and yi ∈ [1, 2, 3, 5, 6] for Ysubj and yi ∈ [1, 2, 3, 4, 5] for Ygrasp.

3 Experimental results

3.1 Kinematic synergies and muscle synergies

Principal Component Analysis (PCA), a very basic dimensionality reduction tech-
nique (see, e.g., [17]), was first applied to the dataset in order to check that a small
number of linear combinations of kinematic and/or sEMG features would account
for a reasonable amount of variability in the data set1. In a nutshell, PCA works
by first sphering the sample matrix X (i.e., subtracting from it the average sam-
ple values dimension-wise and then slashing it by the standard deviations), then
evaluating its covariance matrix Σ = 1

n−1X
TX. Σ is then decomposed according

to the single-value decomposition,

Σ = UΣV T

1 Recall that from now on we will be using the data set obtained by averaging out the sensor
values over the carrying phases identified during the preprocessing phase.
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where Σ is diagonal and contains the eigenvalues of Σ. The columns of U are
rearranged in order to match the magnitude of the eigenvalues in decreasing or-
der, so that each of these columns, when applied back to X, produces a linear
combination of the dimensions of X having a decreasing degree of signal variance.
Denoting by Uk the k × n sub-matrix of U obtained by selecting only the first k
columns of U ,

X∗ = UkX

is a k-dimensional projection of X onto a space preserving a certain, maximal
fraction of the signal variance in X (where k < d—a superscript asterisk denotes
the projected data onto k dimensions). By looking at the cumulative sum of the
eigenvalues of Σ we can detect how much signal variance is lost as k is increased
until k = d. Each of the k dimensions is called a Principal component of X.
In our case, principal components of sEMG or glove values denote the (linear)
synergistic sEMG/kinematic activity. (From now on then, principal components
will be denoted as kinematic or sEMG synergies.)

Fig. 5 Principal Component Analysis of kinematic (Xglove) and sEMG features
(XEMG, Xdist, Xprox) as k is increased; the plots show the normalised cumulative sum of
the PCA eigenvalues. (left) All samples considered altogether; (right) grouped by subject,
markers and error bars denoting average values plus/minus one standard error of the mean.

Consider Figure 5, showing the percentage of data variance as more and more
synergies are considered. On the left panel, PCA is applied to the whole data
set altogether, irrespective of subjects and grasps. In the case of kinematic fea-
tures (glove sensors, Xglove), three synergies account for 74.62% of the total
signal variance; five of them account for 85.52%. In the case of sEMG features
(XEMG, Xdist, Xprox), the figures for three synergies rise to 92.63% and 91.11%
(in turn, Xprox and Xdist) and 83.62% (XEMG).

This clearly proves that kinematic synergies are present; our figures are in
agreement with previous work, given the simplicity of the tasks at hand (e.g.,
[28]). The grasps considered can be captured (at 75% variance) by using three
linear combinations of Xglove, meaning that most of the grasps share the same
three characteristic “eigengrasps”.

A more interesting result is that very strong sEMG synergies are found as
well; that is, that muscles, as represented by their sEMG values, act in a mostly
coordinated fashion, exerting the same forces over and over again. Three linear
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combinations of the 10 electrodes considered account for slightly less than 84% of
the whole signal variance.

Consider now the right panel of the same Figure. This time both kinematic and
sEMG data have been grouped per-subject (markers and error bars denote average
variance percentage values plus/minus one standard error of the mean). In this
case the “compression” obtained by using three synergies is even more evident,
being in turn 87.37%±1.5%, 96.36%±0.72%, 95.13%±1.23% and 91.46%±1.41%
for Xglove, Xprox, Xdist, XEMG. This result overall means that both kinematic and
muscle synergies exist, and that they are even stronger at the single-subject level.

3.2 Common synergy features

We now turn to a more qualitative analysis of the synergies found in the previous
Subsection. From now on we will consider 3 synergies only, that is, k = 3 — this
has the great advantage that data can be visualised, and it involves an acceptable
loss of information as previously stated. We first focus on a reduced version of
the problem, namely we consider a subset of three grasps: pinch grip, small power
grasp, and large power grasp (second, fourth and fifth panels from the left of Figure
2). These grasps are very different from one another from a kinematic point of view;
this is reflected in their distance in standard grasp taxonomies (examples can be
found in [14,22]).

Fig. 6 3D visualisation of 3 of the grasps as performed by all subjects; colours denote grasps.
(left) Kinematic synergies (plotting samples in X∗

glove), (right) muscle synergies, using all

electrodes altogether (X∗
EMG).

Consider first Figure 6, depicting the grasps in 3 dimensions (first, second
and third synergy) in the kinematic (left, plotting data from X∗

glove) and sEMG
(right, plotting data from X∗

EMG) spaces. It is apparent that the grasps are well
clustered, to the point that a linear classifier (i.e., a plane in 3D) could separate
them perfectly from one another in kinematic space, and almost perfectly in muscle
space. As opposed to this, consider now Figure 7 which depicts the same data,
but associating a colour to each subject (rather than to each grasp): separability
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Fig. 7 3D visualisation of 3 of the grasps as performed by all subjects; colours denote subjects.
(left) Kinematic synergies (X∗

glove), (right) muscle synergies (X∗
EMG).

is much less clear. Visual comparison with Figure 6 indicates that each subject
participates in each of the 3 clusters associated with the grasps.

In other words, grasps can be distinguished, but subjects can not. All subjects
roughly do the same things when, e.g., pinch gripping, both kinematically (and this
is no surprise) and as far as muscle activity is concerned. In order to numerically
verify this statement, we now turn to the fully-fledged problem (five grasps, five
subjects, 487 samples). For each of the above described settings (each setting is
mathematically represented by a sample set and a label set) we ran a multi-class
linear classifier and considered the balanced error rate (BER) as a measure of
separability of grasps and subjects. The BER is defined as

BER =
1

5

5∑
j=1

cj
lj

where cj denotes the correctly predicted labels for class j and lj is the total number
of labels for class j.

Linear classification is a statistical technique which can be used, at a very
basic level such as this, to check how separated N classes of objects are (see, e.g.,
the classic [17] again); in particular, for a sample/label set pair (X,Y ), a linear
classifier will here find a set of 3D planes such that all samples in X associated to a
label yi ∈ Y will be on one side of the plane, whereas samples belonging to all other
categories will be on the other side. As a linear classifier we chose to use a Support
Vector Machine (SVM) with linear kernel. SVMs [5,36] are a machine learning
method which will find the separating (hyper)plane between two sets of labelled
sample, such that the margin between the categories is maximised. By margin here
it is meant, twice the distance between the separating plane and the closest sample
in either category. The plane thus found enjoys maximum robustness against noise
in the sampling procedure [8]; in this sense, it is the optimal separating plane. In
mathematical terms, given samples and labels {(xi, yi)} ∈ (X,Y ), the separating
plane is
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Table 1 Balanced error rates obtained while applying a linear classifier to one of the (X,Y )
sample/label sets shown in Figures 6 and 7. Considering three grasps: pinch grip, small power
grasp and large power grasp.

kinematic (Xglove) sEMG, elbow (Xprox) sEMG, forearm (Xdist) sEMG, all (XEMG)

grasps (Ygrasp) 0.38%± 0.38% 13.87%± 2.29% 17.13%± 2.22% 6.39%± 1.87%

subjects (Ysubj) 60.13%± 6.29% 57.15%± 5.43% 74.21%± 3.71% 67.80%± 5.92%

Table 2 Balanced error rates obtained while applying a linear classifier to one of the (X,Y )
sample/label sets shown in Figures 6 and 7. Considering all grasps.

kinematic (Xglove) sEMG, elbow (Xprox) sEMG, forearm (Xdist) sEMG, all (XEMG)

grasps (Ygrasp) 18.54%± 2.01% 35.46%± 3.05% 46.28%± 3.30% 33.49%± 2.50%

subjects (Ysubj) 77.06%± 2.79% 59.45%± 3.57% 71.99%± 2.80% 64.25%± 4.35%

f(x) = w · x + b =
n∑

i=1

αiyi(x · xi) + b

where αi,w ∈ Rd and b ∈ R. The αis and b are found by minimising a regularised
loss function

L(w,α, b) =

{
1

2
‖w‖2 + C · L(w, b, Y )

}
with C ≥ 0 ∈ R. Since our dataset S consists of a relatively small number of
samples (478) we employed 2-fold cross-validation and grid search to find the
optimal SVM C hyperparameter; that means that a randomly chosen half-sized
subset of S was employed for training and the remaining half was used to test.
The procedure was run for 50 times, each time with a different random choice of
the training/testing sets, and then displaying the means and standard deviations
of the errors so obtained. Table 1 shows the results.

As is clear from the Table, trying to tell subjects from one another is pointless,
as all error rates approach the chance level of 80% (recall that there are 5 subjects).
As opposed to that, grasps can be distinguished quite well; in particular, kinematic
synergies represent an almost perfect set of discriminating features (see Figure
6 (left) again). Also, using the 10 sEMG electrodes altogether an error rate of
6.39%± 1.87% is achieved.

The same trend is visible when considering Table 2, in which all grasps are
considered. Results here are uniformly worse, as one would expect since flat grasp,
pinch grip and tripodal grip are quite similar to one another. Still the trend of
Table 1 is visible, subject discrimination being uniformly worse than grasp discrim-
ination. The sEMG features (XEMG, Ygrasp) achieve a BER of 33.49% ± 2.50%,
which is still significantly better than chance level.

Notice that correct classification of sEMG patterns is out of the scope of this
paper—that has already been done with greater success, e.g., using SVMs with
Gaussian kernels. The interest of the result presented above lies rather in the
statistically significant separability of one or more set(s) of samples. In this case
an error rate below chance level is already meaningful. Linear separability here
points at the common pattern underlying a certain class; for instance, the fact
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that a plane can separate the large power grasp from the pinch grip irrespective
of the subjects means that an easy procedure can be found to tell which grasp is
being enacted (for instance, evaluating the sample distance from the plane itself).

3.3 Inter-synergy distances

The above results clearly establish that strong synergies exist both at the kinematic
and muscular levels during grasping, and that they can be effectively used to
characterise each grasp across subjects. A further interesting question is that of
checking whether the grasps look similar in the two spaces or not. It is expected
that similarities should exist in both spaces, but that they should be different
according to the space.

In order to investigate this issue, we consider the mean values of each group of
samples representing a grasp, both in the kinematic and sEMG space; this corre-
sponds to considering the centres-of-mass of the clusters of Figure 6 (considering
all the five grasps, rather than just three). We then evaluate the pairwise Euclidean
distance between these centres, obtaining two inter-grasp distance matrices, visi-
ble in Figure 8. In each matrix D, element Dij represents the Euclidean distance
between grasp i and grasp j in the related space. Distances are normalised between
0 and 1. (The matrices are obviously symmetric.)

Fig. 8 Inter-grasp distance matrices. (left) Grasps projected onto 3 muscle synergies; (right)
onto 3 kinematic synergies. Distances are normalised between 0 and 1.

As is apparent from the matrices, the inter-grasp distances are not quite similar
in the two spaces. For instance, in the kinematic space the small and large power
grasps have 0.39 distance, whereas in the sEMG space this figure is 1, that is,
they are the two most different grasps. This indicates that the two grasp postures
are very different (completely open versus completely closed), but the patterns
of muscle activation are similar. A striking example of the opposite phenomenon
is the distance between pinch grip and large power grasp: kinematically there
is little difference (distance 0.35, all fingers wrapped around something), but a
completely different muscle configuration (distance 1) is employed. Lastly, notice
that pinch grip and tripodal grip are essentially identical from a kinematic point
of view (distance 0.01) but rather different in sEMG space (distance 0.08). Again,
this is sensible, since activating the middle finger requires additional muscle power
whereas the two grips look very similar as far as the hand posture is concerned.
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3.4 Anatomical relevance of synergies

Lastly, we restrict our attention to the sEMG synergies (that is, to the columns of
Uk) and try to understand what they mean from a muscular / anatomical point of
view. As stated above, the placement of electrodes is irrespective of the anatomy,
but it was kept carefully uniform across all subjects; i.e., the ventral electrodes
were always placed over the ventral muscles (flexors), the dorsal electrodes over the
extensors, and the distal electrodes were always placed farther away from the elbow
with respect to the proximals. In general, muscle synergies are linear combinations
of electrode values which maximise the signal variance; they reflect the grouped
activation of the forearm muscles. Therefore, inspecting these combinations should
reveal in which ways groups of muscles are activated during grasping.

In order to investigate this issue, the first three columns of Uk are projected
back onto the sets of sEMG electrodes, thus retrieving the main modes of electrode
activation, as they are spatially distributed over the forearm of the subjects. Figure
9 shows the obtained activations as a polar graph, for each synergy. Values are
normalised between −1 and 1.

Fig. 9 The first three muscle synergies (first three columns of Uk) represented on an electrode-
activation axis. The graphs show the dorsal electrodes (d1, d2) on the right-hand side, and
the ventral electrodes (v1, v2, v3) on the left. Proximal electrodes are represented in full-hue
colours (red, green, blue) whereas distal electrodes are represented in light shades of red, green
and blue. Values are normalised between −1 (centre of the graph) and 1 (outer circle). The
zero level is denoted by the dashed circle.

In order to facilitate the inspection of the graphs, the distal and proximal
electrode activations are represented with the same colour in two different shades:
normal for the proximal electrodes and light for the distal ones. For instance,
the activation of proximal electrodes in synergy #1 is red whereas that of distal
electrodes is light red. Moreover, dorsal electrodes are shown on the right-hand side
of the graphs whereas ventral electrodes appear on the left, coherently with the
steady forearm posture assumed by the subjects during the carrying phase; each
polar graph can be superimposed to a forearm going through the page, ventral side
on the left. See again Figures 1 (right panel) and 3, and the movie “grasping.avi.”

The first remark is that proximal and distal electrodes are always activated
coherently; for example, the dorsal 2 position (d2) shows high values in synergy
#1 and #2 and low values in synergy #3, for both the proximal and distal elec-
trodes; the dorsal 1 is low in synergies #2 and #3 and high in synergy #1; and
so on. The shapes of the light- and dark-coloured lines match uniformly. This is
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expected, since in the forearm, muscles stretch along the forearm axis; therefore,
similar, coherent levels of activation are expected if we gather the activation po-
tential in different spots along the axis itself, but without rotating the electrodes
position. This also validates the constraint that the forearm must not be pronated
/ supinated during the experiment.

As far as synergies are concerned, synergy #1 represents a uniform activation of
all muscles, flexors (ventral side) and extensors (dorsal side). This is caused by the
coactivation of the extensor and flexor muscles in every finger flexion and extension,
and reflects the complexity of the complex underlying hand biomechanics, i.e., the
connection between the tendons themselves as well as between the tendons and
the joints. Tendons usually have multiple insertion points in the finger, and the
stable movement of a finger involves the coactivation of many muscles to prevent
instability of the same as well as of the other fingers.

On the other hand, synergies #2 and #3 take into account more prominent
activations of, in turn, the upper dorsal (d2) and the upper ventral (v1, v2) sides.
This is correlated to the selective activation of the extensor muscles during pinch
grip (in order to refrain from clutching an object with all fingers) and other similar
grips (for instance, the tripodal).

Fig. 10 The five grasps, expressed in terms of the three muscle synergies visible in Figure 9.

This is confirmed by Figure 10, in which each of the five grasps considered is
projected onto the three muscle synergies of Figure 9—in other words, the grasp
components along the three synergies are visualised. As one can see, synergy #1 is
maximally active in the power grasps, much less in the tripodal and minimally in
the pinch and tripodal grip. We interpret this as reflecting the uniform activation
of the muscles when a cylindrical or spherical grasp is required. In these cases
there is no selective activation on one side or the other. Remarkably, the tripodal
grip shows a much higher usage of this synergy with respect to the pinch grip.
As opposed to that, synergies #2 and #3 are activated in the same order of
magnitude of synergy #1 only in the cases of the flat and pinch grips, where a
really selective activation of two or three fingers (and therefore of different parts
of the flexors/extensors) is required.
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4 Conclusions and discussion

4.1 Evidence of muscle synergies

The concept of synergies has since long been established in the kinematic descrip-
tion of the human hand. Indeed, when taking a large number of every-day grasps
into account, most movements of the fingers of the hand can be described with a
very limited number of principal components (i.e., 3–5 [28], considerably less than
the number of degrees of freedom of all fingers combined, i.e., 25 [31]). Complemen-
tary to that, this work tries to answer the following, so-far unanswered question:
are analogous synergies also present at the level of the exerted grasp forces and,
consequently, of the activation of the forearm muscles?

Our results confirm that, at least in this experiment, and using surface elec-
tromyography, this is the case. Muscle activation data, i.e., the sEMG signal gath-
ered from 5 human subjects during a grasping task, can be represented using as
few as 3 principal sEMG components (muscle synergies) while retaining 85% to
90% of the signal variance. Moreover, the signal samples can be effectively lin-
early separated when clustered on a per-grasping basis, but not on a per-subject
basis. From this we conclude that as few as 3 sEMG synergies are sufficient to
characterise one among 5 grasps, with a precision which obviously depends on the
(muscular) similarity among grasps, but that anyway largely surpasses the corre-
sponding precision when trying to discriminate subjects. The fact that we employ
such a simple classification system as a linear discriminant (Support Vector Ma-
chine with linear kernel) proves that the separation is not only above chance level,
but evident. Analogously to what happens for kinematic synergies, there are mus-
cle synergies in humans; and when humans engage in a grasping task, they are
characteristic of grasp types but not of subjects. In one word, they are largely
invariant across (our) subjects.

4.2 Anatomical relevance of muscle synergies

Kinematic synergies are evidently related to the shape of the objects which are
being grasped, meaning that their combination leads to the same hand shapes all
over. An analogous but different story emerges from the qualitative analysis of
muscle synergies. In our experiment, the sEMG electrodes were placed at anatom-
ically similar locations in all subjects, without targeting single muscles but rather
groups of them, namely the flexors (on the ventral side of the forearm) and the
extensors (on the dorsal side). By back-projecting the 3 sEMG principal compo-
nents on the electrode layout (consider Figure 9 again) we discovered that each
synergy corresponds to a qualitatively very different synergistic muscle activation:
uniform activation, activation of the dorsal muscles near the radius, and activa-
tion of the flexors near the radius. A description of the grasps according to the
synergies confirms that each grasp employs each synergy to very different degrees.
This analysis reminds of that found for kinematic patterns in, e.g., [28,29,4].

From this we conclude that they are physiologically plausible representations
of the grasps themselves, or rather, of the muscle activations underlying them.
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4.3 Kinematic and muscle synergies

Inter-pattern distances (consider Figure 8 again) show that force-similar grasps
are close to each other in the 3-principal-component sEMG space, analogously to
what happens in the kinematic (Cyberglove data) space; and that the sEMG and
kinematic distance matrices are very different from each other, as it is intuitively
expected. Grasps which require similar muscle activations do not necessarily match
pairs of grasps which correspond to similar finger positions.

This sheds some light on the standard approach to grasp planning, in which
mostly a purely kinematic stance is assumed. During the reaching / pre-shaping
phase it is probably best to work with the hand configuration (finger positions) in
order to match the shape of the object to be grasped; but to then enforce grasp
stability it might be useful to also consider the required force configuration at the
fingertips. Such a force configuration might effectively be planned in advance using
the sEMG signal of a human subject, for instance during teleoperation, mapped
onto the dynamics of the robotic gripper. Indeed, in [6] it was shown that different
EMG signals related to different objects differed not only during grip but also
during the reaching movement towards the object;

4.4 Applications

This result is still mainly at the level of basic research; in order for it to be
applicable, the issues of stability and generality of human muscle synergies must
be first investigated. Firstly, the recurrence of (at least) comparable synergies
across sessions of data gathering must be assessed. The sEMG of a single subject is
notoriously prone to wide changes as the subject sweats, as electrode positions vary
when they are donned and doffed, and as muscle fatigue appears. The situation is
even worse when comparing the signal across subjects, given the natural variability
of human anatomy. Lastly, one of the main target applications of this work is about
amputees, and every amputation is in general different from all others, making it
quite unrealistic that previous knowledge extracted from a pool of subjects (either
amputated or intact) will generalise to new amputees.

Actually, the use of surface EMG is, from this point of view, a hindrance;
the problem of knowledge transfer across subjects has already been investigated
in this field [9] with rather negative results, at least using a naive application of
previously trained models on new subjects. A more sophisticated technique has
been used with better success in [26,34], but in that case the subject pool was
remarkably larger. An even larger pool of subject is envisioned to be used in the
Ninapro project [2].

Of course, one slightly less comfortable but feasible scenario is that of training
the classifier for every subject before going into action. In this case the situation
seems much better even for amputees: residual muscle activity of excellent quality
has recently been found in long-term amputees [30,10,33,13].

Having said that, the use of sEMG synergies finds it main application in force-
and impedance-based control of mechanical and prosthetic hands. By consider-
ing the sEMG synergies when detecting muscular activity and controlling the
prosthetic hand correspondingly, a more robust approach to sEMG-based hand
prosthesis control may be obtained; in particular, even mechanical hands gifted
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with a high number of degrees of freedom can be controlled with a reduced set of
commands [38].
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