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Abstract. We present a computationally e�cient architecture for im-
age super-resolution that achieves state-of-the-art results on images with
large spatial extend. Apart from utilizing Convolutional Neural Net-
works, our approach leverages recent advances in fast approximate infer-
ence for sparse coding. We empirically show that upsampling methods
work much better on latent representations than in the original spa-
tial domain. Our experiments indicate that the proposed architecture
can serve as a basis for additional future improvements in image super-
resolution.
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1 Introduction

The term super-resolution in computer vision generally denotes the process of
increasing the resolution of a given image or a set of images. Sparse Coding, a
powerful dictionary learning method [1–4], was recently applied to single-image
super-resolution in a very successful way [5–8]. Hereby, the sparse code couples
two di↵erent kinds of dictionaries: One dictionary contains low-resolution atoms
and one dictionary contains high-resolution atoms. Super-resolving an image
patch is then performed in a straight-forward manner: Given the low-resolution
patch, determine its sparse code relative to the low-resolution dictionary, and
then apply this sparse code in the high-resolution generative model. Couzinie-
Devy et al. [5] apply this idea for deblurring and super-resolution by processing
each input image patch by patch. Yang et al. [6] follow a similar idea but propose
di↵erent additions for face and natural images and combine their method with
a global reconstruction constraint over the whole image. [7] and [8] take sparse
coding for super-resolution even further, working not only with two dimensional
images but processing even depth information.

Note that these approaches resolve the super-resolution problem in a very el-
egant implicit way: Upsampling the spatial data, as is necessary in the standard
super-resolution approaches like bicubic interpolation [9], is achieved indirectly
with the high-resolution dictionary. However, this entails that applying these
methods to images larger than the training patches is cumbersome and com-
putationally ine�cient. Furthermore, finding the sparse code for a given image
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patch is a costly optimization problem itself and thus applying the mentioned
approaches to large images with many patches is extremely slow. Yang et al.
specify the time to enlarge a 85⇥86 image to 255⇥258 with their sparse coding
model from [6] and a reasonably chosen set of parameters as approximately 30
seconds on a Core duo@1.83 Ghz with 2GB Ram.

We tackle exactly this problem: Our proposed super-resolution architecture
leverages recent insights into fast approximate sparse coding and utilizes the
natural characteristic of the convolutional operator. In this way, we can train

our model on exemplary image patches and scale it to arbitrarily sized test im-

ages without any additional cost. We present our approach and the necessary
preliminary work in section 2. Experimental details and results are described in
section 3. Section 4 concludes with a brief outlook on future work.

2 Approach

Recently, Convolutional Neural Networks (CNN) [10] have gained a lot of at-
tention due to their success in several large scale computer vision tasks [11–13].
Due to the nature of the convolutional operator, CNNs can be applied to in-
puts of arbitrary size, i.e. they are apriori not tied to the dimensionality of the
samples from the training set. This property is often overlooked (see [14, 15] for
some notable recent exceptions), yet is one of the main ingredients in order to
allow the transfer of learned patch-based super-resolution to full image super-

resolution. However, the standard approach of the previously mentioned sparse
coding based super-resolution methods is now no longer applicable: The upscal-

ing of the data is encoded in the dictionary elements of these methods – this is
not possible in a straight forward manner with a convolutional based approach.

Where could upsampling of an image happen? The common approach [9] is
to upsample in the image domain. The problem of super-resolution then simply
reduces to learning an optimal deconvolutional operator. However, if one consid-
ers the latent representation of an image (i.e. the convolutional sparse codes in
our case), another option occurs: Upsampling this latent representation. Similar
to standard signal processing we hypothesize that upsampling should be per-
formed on the adaptively learned latent representation of an image and not on
its original spatial representation.

Specifically our method consists of three parts: (i) Fast convolutional sparse
coding of an input, (ii) upsampling of the sparse codes and (iii) convolutional
decoding of the upsampled sparse codes. If the upsampling method is chosen in
the right way, this architecture can be applied to inputs (i.e. images) of arbitrary
dimensions.

2.1 Fundamentals

In recent years, a wide variety of sparse coding algorithms were developed that
learn good feature representations of natural images [1–4]. A big practical hin-
drance of the standard sparse coding algorithms is that inference of a sparse code
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requires running a computationally expensive optimization algorithm. Utilizing
the powerful approximation capabilities of neural networks, [16, 17] propose an
algorithm that can simultaneously learn an overcomplete dictionary for sparse
coding and an approximator that predicts the optimal sparse representation.

Taking this idea even further [18] shows that by introducing convolutional
operators a richer, more diverse set of features is learned. The objective function
for their architecture is as follows:
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is equivalent to the standard convolutional sparse coding formulation.
The encoder tries to produce representations that are similar to the optimal
convolutional sparse codes. Given an input image, the encoder produces its cor-
responding sparse code and can therefore be seen as a single step approximator
of the iterative sparse code optimization method, outperforming it significantly
in speed.

Learning (i.e. finding D(e) and D(d)) happens in an alternating manner: (i)
First, by keeping D(e) and D(d) constant, minimize eq. 1 with respect to z.

Starting from the initial value provided by f(D(e)

k

⇤x) (for all k) this can be done
with various kinds of optimization algorithms. In our experiments, we employed
the Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) [19]. (ii) Second,
based on this optimal sparse code, update D(e) and D(d) by one step of gradient
descent.

2.2 Upsampling

Convolution produces results similar in size to its input when applied to an
image. Näıvely employing the architecture from eq. 1 for super-resolution can
therefore only be managed with a trick: Given a low-resolution image patch the
encoder approximates a sparse code. The decoder then uses this sparse code
to infer a high resolution of the patch center only. Super-resolving an image
is then achieved by applying this process repeatedly to di↵erent areas of the
low-resolution image followed by stacking together the results.

However, in order to have enough information in the sparse representation for
upsampling the patch center, the filter sizes in the encoder have to be choosen
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very large in relation to the low-resolution image, which usually leads to learn-
ing averaging filters only. As expected, this idea yields very poor results which
resemble only a very blurred upscaled version of the low-resolution image center.

For proper image super-resolution the model from eq. 1 requires some mod-
ifications: As already mentioned before hand, we introduce an upscaling layer
between the encoding and decoding stage of the model, working on the sparse
representation of an input:
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where x

(lr) and x

(hr) are the low-resolution and high-resolution versions of the
input x respectively and W 2 Ro(hr)·p(hr)⇥o(lr)·p(lr) is a matrix that scales the
flattened sparse codes z

k

up to their high-resolution version. After applying W

the result has to be reshaped to the correct high-resolution sparse code shape
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. This formulation of the model allows to use
any upsampling method that is based on a linear transformation by choosing
matrix W accordingly. Note that learning D(e) and D(d) proceeds exactly as in
the original architecture from eq. 1. Figure 1 shows a graphical interpretation of
the model with input data at di↵erent stages of the pipeline.
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Fig. 1: On the right side, a low-resolution image is feed into the fast approximate
convolutional sparse coding module, then upscaled and finally deconvoluted. See
section 3.2 for more comments with respect to this Figure.

Albeit an arbitrarily structured matrix W would be the most flexible and
powerful approach, the upsampling matrix W must be choosen as a convolu-
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tional operator itself. In our experiments, we considered four di↵erent kinds of
upscaling operations for the sparse codes: bilinear interpolation, linear shifted
interpolation, nearest neighbor interpolation and our own, non-standard, perfo-
rate interpolation. Figure 2 illustrates these methods graphically for the example
of two-fold super-resolution: It shows the convolutional weights that are applied
to a neighborhood of pixels in a low-resolution sparse code in order to generate
a pixel in the high-resolution sparse code.
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Fig. 2: Upsampling an image by a factor of 2: Every pixel in the low-resolution
image is replaced by 4 pixels, indicated by the black square in the left-most
image. How the values of these 4 pixels are actually computed depends on the
specific upsampling scheme. Here we consider schemes that utilize 4 neighboring
low-resolution pixels to compute one high-resolution pixel. To the right, we show
the upsampling weights for the 4 methods mentioned in the text. Note that per-
forated upsampling induces additionally sparsification. It crudely approximates
the inverse of the widely-used max-pooling operator from deep CNNs [12].

3 Experiments

Most super-resolution approaches rely on datasets with very low resolutions
[6, 20, 21]. However, the strength of the presented model lies in its speed and
applicability to large images. Thus, we chose to train and evaluate on a dataset
that features images with very high resolutions, the Van Hateren dataset [22]. It
comprises 4167 gray scale images with 1536⇥ 1024 pixels each and a gray scale
depth of 12 bit. The pictures mostly depict scenes from nature or buildings. For
the training set we extracted 20 patches of size 50 ⇥ 50 at random positions
from 400 images, resulting in 8000 training samples. In order to generate the
low-resolution patches, the original ones were blurred with an anti-aliasing filter
and then down-sampled accordingly. The validation set was created in the same
way but using a di↵erent set of 100 images. And finally the test set features
100 unseen full-sized images. Training and applying the other sparse coding
based super-resolution algorithms cited earlier would not be tractable on (test)
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images of this size. We therefore compared our approach with standard super-
resolution algorithms from the image processing domain [9]: bicubic spline based
interpolation, bilinear interpolation and nearest neighbor interpolation. After
training the model from eq. 2 is finished, we further fine-tuned the complete
convolutional super-resolution model.

3.1 Training details

To keep training time manageable the model was trained one sample (that is,
a pair of low resolution and accompanying high resolution image patch) at a
time, samples were chosen at random. The sparse codes were optimized with 5
iterations of FISTA at each training step. Less than 5 FISTA iterations decreased
the final results noticeably while more iterations didn’t have any influence on
the results but increased training time significantly. The non-linearity f (see eq.
1) is set to a soft threshold function [17]. Filters were optimized with one step
of gradient descent per model training iteration. All experiments were trained
for 1 million epochs with an initial learning rate of 2 · 10�4 that decayed as

2·10�4

1.0+(epoch/5000)

. Finally, the model with the lowest objective function score on

the validation set was further fine tuned with a learning rate of 1 · 10�6 for
another 16000 epochs.

3.2 Evaluation

There are a number of ways to evaluate the results of super-resolution: Some
papers judge the quality of the results by their Mean Squared Error per pixel
(MSE) to the ground truth [6], some use the related Peak-Signal-to-Noise Ratio
(PSNR) [23] and others rely on Structured Similarity (SSIM) as a measure of
error [20, 21]. PSNR is logarithmically proportional to MSE and both can be
argued to only inaccurately represent the human understanding of better or
worse regarding the quality of an image-reconstruction. SSIM aims to tackle
this shortcoming – we therefore report both PSNR and SSIM scores in our
evaluation.

A qualitative impression of the learned architecture is shown in Figure 1:
Typical filters for both the encoder as well as the decoder are shown, in this case
for an architecture with 8 latent channels. On the left side, a super-resolved image
patch (denoted by model) is shown, computed from a low-resolution image patch
depicted at the right side. For comparison, the original (orig) high-resolution
patch and the nearest neighbor interpolation (nn) is also shown.

Table 1 shows both the PSNR and SSIM scores for the various types of la-
tent upsampling methods presented in section 2.2 (CNN-PF denotes perforated
interpolation, CNN-BL denotes bilinear interpolation, CNN-NN denotes nearest
neighbor interpolation and CNN-SH denotes linear shifted interpolation). BCI,
BLI and NNI denote the classic bicubic, bilinear and nearest neighbor interpo-
lation methods in the original spatial domain respectively. K, the number latent
channels is set to 8 in all experiments: Smaller numbers (4, 6) resulted in infe-
rior results, for larger numbers (12, 16, 32) training did not converge after 21
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CNN-PF CNN-BL CNN-NN CNN-SH CNN-LD BCI BLI NNI

PSNR 32.55 32.52 32.49 31.98 32.07 31.80 30.79 30.55
SSIM 0.946 0.945 0.942 0.941 0.944 0.935 0.922 0.913

Table 1: Our perforated sparse code upsampling method performs best. For a full
image from the test set the unoptimized version takes about 4 seconds, compared
to approximately 2.5 seconds for bicubic interpolation. Larger numbers are better
for both PSNR and SSIM.

days and thus was stopped – FISTA proved to be the bottleneck for these larger
models. All other hyperparameters were determined via the validation set. We
also learned W (see eq. 2), which is resembled by the column CNN-LD.

Apart from the fact that CNN-PF outperforms all other approaches, in par-
ticular the widely used bicubic interpolation method, we point out the following
two observations: (i) Both bilinear and nearest neighbor interpolation methods
perform significantly better when applied to the latent representation, support-
ing our original hypothesis empirically. Hence, an obvious next step is to apply
bicubic interpolation accordingly in the latent domain – however this can’t no
longer be written in the form of eq. 2 because now non-linear features need to
be computed in the sparse domain. (ii) Fine-tuning did not improve the results.
We assume that this is due to approximating FISTA with only one convolutional
layer.

4 Summary and Outlook

We presented a single image super-resolution approach based on fast approxi-
mate sparse coding with convolutional neural networks. Our approach not only
outperforms state-of-the-art super-resolution methods for large images but is also
computationally e�cient. As indicated by our experiments, unrolling the itera-
tive convolutional FISTA algorithm in a way similar to [24] is a very promising
future research direction. Extrapolating the observations from Table 1, latent
bicubic upsampling, or even more general upsampling methods that can be real-
ized through [25] should increase the performance of our framework considerably.
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